2,655
Views
8
CrossRef citations to date
0
Altmetric
Review

Regulatory network controls microbial biofilm development, with Candida albicans as a representative: from adhesion to dispersal

ORCID Icon, , , , , , , , ORCID Icon, & show all
Pages 253-267 | Received 27 Jul 2021, Accepted 19 Oct 2021, Published online: 14 Jan 2022

References

  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–193.
  • Hurlow J, Couch K, Laforet K. Clinical biofilms: a challenging frontier in wound care. Adv Wound Care (New Rochelle). 2015;4(5):295–301.
  • Cortés ME, Bonilla JC, Sinisterra RD. Biofilm formation, control and novel strategies for eradication. Political Science. 2011;2:896–905.
  • Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881.
  • Shirtliff ME, Mader JT, Camper AK. Molecular interactions in biofilms. Chem Biol. 2002;9(8):859–871.
  • Marrie TJ, Nelligan J, Costerton JW. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation. 1982;66(6):1339–1341.
  • Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–138.
  • Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11(7):1034–1043.
  • Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81(1):7–11.
  • Van Acker H, Van Dijck P, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol. 2014;22(6):326–333.
  • Chmielewski RAN, Frank JF. Biofilm formation and control in food processing facilities. Compr Rev Food SCI F. 2003;2(1):22–32.
  • Chmielewski RAN, Frank JF. A predictive model for heat inactivation of Listeria monocytogenes biofilm on buna-N rubber. LWT. 2006;39(1):11–19.
  • Saitou K, Furuhata K, Kawakami Y, et al. Biofilm formation abilities and disinfectant-resistance of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals. Food Rev Int. 1992;8:573–603.
  • Simões M, Simões LC, Vieira MJ. A review of current and emergent biofilm control strategies. LWT. 2010;43(4):573–583.
  • Mattila‐Sandholm T, Wirtanen G. Biofilm formation in the industry: areview. Food Rev Int. 1992;8(4):573–603.
  • Flemming HC, Percival SL, Walker JT. Contamination potential of biofilms in water distribution systems. Water Sci. Technol. 2018;2:271–280.
  • Helmi K, Skraber S, Gantzer C, et al. Interactions of Cryptosporidium parvum, Giardia lamblia, vaccinal poliovirus type 1, and bacteriophages Φ174 and MS2 with a drinking water biofilm and a wastewater biofilm. Appl Environ Microbiol. 2008;74(7):2079–2088.
  • Ashbolt NJ. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology. 2004;198(1–3):229–238.
  • Collier SA, Stockman LJ, Hicks LA, et al. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol Infect. 2012;140(11):2003–2013.
  • Jiang Y, Liu Y, Zhang X, et al. Biofilm application in the microbial biochemicals production process. Biotechnol Adv. 2021;48:107724.
  • Biase AD, Kowalski MS, Devlin TR, et al. Moving bed biofilm reactor technology in municipal wastewater treatment: a review. J Environ Manage. 2019;247:849–866.
  • Kokare CR, Chakraborty S, Khopade AN, et al. Biofilm: importance and applications. Indian J Biotechnol. 2009;8:159–168.
  • Nazir R, Zaffar MR, Amin I. Bacterial biofilms: the remarkable heterogeneous biological communities and nitrogen fixing microorganisms in lakes. Freshwater Microbiology. 2019: 307–340.
  • Salama Y, Chennaoui M, Mountadar M, et al. Influence of support media on COD and BOD removal from domestic wastewater using biological treatment in batch mode. Desalin Water Treat. 2015;54(1):37–43.
  • Sheng GP, Yu HQ. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 2006;40(6):1233–1239.
  • Salama Y, Chennaoui M, Sylla A, et al. Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review. Desalin Water Treat. 2015;57(35):16220–16237.
  • Costa OYA, Raaijmakers JM, Kuramae EE. Microbial Extracellular Polymeric Substances: ecological Function and Impact on Soil Aggregation. Front Microbiol. 2018;9:1636.
  • Sutherland IW. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology. 2001;147(1):3–9.
  • Matsuyama T, Nakagawa Y. Surface-active exolipids analysis of absolute chemical structures and biological functions. J Microbiol Methods. 1996;25(2):165–175.
  • Yang L, Barken KB, Skindersoe ME, et al. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiol. 2007;153(5):1318–1328.
  • Stewart PS. Diffusion in biofilms. J Bacteriol. 2003;185(5):1485–1491.
  • Ramey BE, Koutsoudis M, Bodman SBV, et al. Biofilm formation in plant-microbe associations. Curr Opin Microbiol. 2004;7(6):602–609.
  • Nikolic N, Barner T, Ackermann M. Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations. BMC Microbiol. 2013;13(1):258.
  • Lin YC, Cornell WC, Jo J, et al. The Pseudomonas aeruginosa complement of lactate dehydrogenases enables use of d- and l-lactate and metabolic cross-feeding. mBio. 2018;9(5). 10.1128/mBio.00961-18.
  • Schiessl KT, Hu F, Jo J, et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun. 2019;10(1):762.
  • Mathe L, Van DP. Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet. 2013;59(4):251–264.
  • Warnock DW. Trends in the epidemiology of invasive fungal infections. Nihon Ishinkin Gakkai Zasshi. 2007;48(1):1–12.
  • Barnes RA. Early diagnosis of fungal infection in immunocompromised patients. J Antimicrob Chemoth. 2008;61(Supplement 1):i3–6.
  • Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm Formation by the Fungal Pathogen Candida albicans Development, Architecture, and Drug Resistance. J Bacteriol. 2001;183(18):5385–5394.
  • Berman J. Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol. 2006;9(6):595–601.
  • Guo DD, Yue HZ, Wei YJ, et al. Genetic regulatory mechanisms of Candida albicansbiofilm formation. Chinese Journal of Biotechnology. 2017;33(9):1567–1581.
  • Dalle F, Wachtler B, L’Ollivier C, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2010;12(2):248–271.
  • Gil-Bona A, Parra GC, Hernáez M, et al. Candida albicanscell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host-pathogen interaction. J Proteomics. Vol. 127. 2015. p. 340–351.
  • Shao J, Wang T, Yan Y, et al. Matrine reduces yeast-to-hypha transition and resistance of a fluconazole-resistant strain of Candida albicans. J Appl Microbiol. 2014;117(3):618–626.
  • Ramage G, Saville SP, Wickes BL, et al. Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule. Appl Environ Microbiol. 2002;68(11):5459–5463.
  • Fanning S, Mitchell AP. Fungal biofilms. PLoS Pathog. 2012;8(4):e1002585.
  • Aggarwal S, Stewart P, Hozalski R. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: are Bacterial Biofilms Overdesigned? Fibertas Academica. 2018;8(2):29–32.
  • Nett J, Lincoln L, Marchillo K, et al. Putative role of beta-1,3 glucans in Candida albicansbiofilm resistance. Antimicrob Agents Ch. 2007;51(2):510–520.
  • Lazzell AL, Chaturvedi AK, Pierce CG, et al. Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemoth. 2009;64(3):567–570.
  • Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62(3):915–921.
  • Hawser SP, Douglas LJ. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Ch. 1995;39(9):2128–2131.
  • Ramage G, Vande WK, Wickes BL, et al. Standardized Method for In Vitro Antifungal Susceptibility Testing of Candida albicans Biofilms. Antimicrob Agents Ch. 2001;45(9):2475–2479.
  • Kojic EM, Darouiche RO. Candida Infections of Medical Devices. Clin Microbiol Rev. 2004;17(2):255–267.
  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.
  • Emily J, Marsh HL, Wang H. A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol Lett. 2003;228(2):203–210.
  • Shrout JD, Tolker-Nielsen T, Givskov M, et al. The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bull. 2011;36(5):367–373.
  • Nahar S, Mizan MFR, Ha AJ, et al. Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr Rev Food Sci Food Saf. 2018;17(6):1484–1502.
  • Bradle DE. A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol. 1980;26(2):146–154.
  • O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54(1):49–79.
  • Ryu JH, Beuchat LR. Biofilm formation by Escherichia coli O157: h7on stainless steel: effect of exopolysaccharide and Curli production on its resistance to chlorine. Appl Environ Microbiol. 2005;71(1):247–254.
  • Vazquez V, Liang X, Horndahl JK, et al. Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMM) bone sialoprotein-binding protein (Bbp). J Biol Chem. 2011;286(34):29797–29805.
  • Paterson GK, Orihuela CJ. Pneumococcal microbial surface components recognizing adhesive matrix molecules targeting of the extracellular matrix. Mol Microbiol. 2010;77(1):1–5.
  • Foster TJ, Geoghegan JA, Ganesh VK, et al. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49–62.
  • Kang M, Ko YP, Liang X, et al. Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of Gram-positive bacteria inhibit complement activation via the classical pathway. J Biol Chem. 2013;288(28):20520–20531.
  • Henriques M, Gasparetto K, Azeredo J, et al. Experimental methodology to quantify Candida albicans cell surface hydrophobicity. Biotechnol Lett. 2002;24(13):1111–1115.
  • Chaffin WL. Candida albicanscell wall proteins. Microbiol Mol Biol Rev. 2008;72:495–544.
  • Silva S, Negri M, Henriques M, et al. Adherence and biofilm formation of non-Candida albicansCandida species. Trends Microbiol. 2011;19(5):241–247.
  • Wang YC, Huang SH, Lan CY, et al. Prediction of phenotype-associated genes via a cellular network approach: a Candida albicans infection case study. PLoS One. 2012;7(4):e35339.
  • Tronchin G, Pihet M, Lopes-Bezerra LM, et al. Adherence mechanisms in human pathogenic fungi. Med Mycol. 2008;46(8):749–772.
  • Cota E, Hoyer LL. The Candida albicans agglutinin-like sequence family of adhesins: functional insights gained from structural analysis. Future Microbiol. 2015;10(10):1635–1648.
  • Nobile CJ, Schneider HA, Nett JE, et al. Complementary adhesin function in Candida albicans biofilm formation. Curr Biol. 2008;18(14):1017–1024.
  • Ramage G, Vande WK, López-Ribot JL, et al. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett. 2002;214(1):95–100.
  • Nobile CJ, Mitchell AP. Regulation of cell-surface genes and biofilm formation by the Candida albicans transcription factor Bcr1p. Curr Biol. 2005;15(12):1150–1155.
  • Nobile CJ, Andes DR, Nett JE, et al. Critical role of Bcr1-dependent adhesins in Candida albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2(7):e63.
  • Srivastava A, Sircaik S, Husain F, et al. Distinct roles of the 7-transmembrane receptor protein Rta3 in regulating the asymmetric distribution of phosphatidylcholine across the plasma membrane and biofilm formation in Candida albicans. Cell Microbiol. 2017;19(12):E12767.
  • Pierce VJ, Kumamoto AC, Lorenz M. Variation in Candida albicans EFG1 Expression Enables Host-Dependent Changes in Colonizing Fungal Populations. MBio. 2012;3(4):e00117–12.
  • Stoldt VR, Sonneborn A, Leuker CE, et al. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. Embo J. 1997;16(8):1982–1991.
  • Chen HF, Lan CY, Coste AT. Role of SFP1 in the Regulation of Candida albicans Biofilm Formation. PLoS One. 2015;10(6):e0129903.
  • Dickson RC. Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res. 2008;49(5):909–921.
  • Patton JL, Lester RL. The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane. Journal Bacteriol. 1991;173(10):3101–3108
  • Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Bio. 2008;9(2):125–138.
  • Moosa MYS, Alangaden GJ, Manavathu E, et al. Resistance to amphotericin B does not emerge during treatment for invasive aspergillosis. J Antimicrob Chemother. 2002;49(1):209–213.
  • Navarro GF, Alonso MR, Rico H, et al. A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology. 1998;144(2):411–424.
  • Nobile CJ, Mitchell AP. Genetics and genomics of Candida albicansbiofilm formation. Cell Microbiol. 2006;8(9):1382–1391.
  • Mollinedo F. Lipid raft involvement in yeast cell growth and death. Front Oncol. 2012;2(140). DOI:10.3389/fonc.2012.00140
  • Csank C, Schröppel K, Leberer E, et al. Roles of the Candida albicansmitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun. 1998;66(6):2713–2721.
  • Sandini S, Stringaro A, Arancia S, et al. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans. BMC Microbiol. 2011;11(1):106.
  • Nobile CJ, Nett JE, Andes DR, et al. Function of Candida albicansadhesin Hwp1 in biofilm formation. Eukaryot Cell. 2006;5(10):1604–1610.
  • Nieto MC, Telleria O, Cisterna R. Sentinel surveillance of invasive candidiasis in Spain: epidemiology and antifungal susceptibility. Diagn Microbiol Infect Dis. 2015;81(1):34–40.
  • Allesen-Holm M, Barken KB, Yang L, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006;59(4):1114–1128.
  • Martins M, Henriques M, Lopez-Ribot JL, et al. Addition of DNAse improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses. 2012;55(1):80–85.
  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, et al. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295(5559):1487.
  • Izano EA, Amarante MA, Kher WB, et al. Differential Roles of Poly-N-Acetylglucosamine Surface Polysaccharide and Extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis Biofilms. Appl Environ Microbiol. 2008;74(2):470–476.
  • Hornby JM, Jensen. EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microb. 2001;67(7):2982–2992.
  • Yu LH, Wei X, Ma M, et al. Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. Antimicrob Agents Ch. 2012;56(2):770–775.
  • Chen H, Fujita M, Feng QH, et al. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A. 2004;101(14):5048–5052.
  • Chen H, Fink GR. Feedback control of morphogenesis in fungi by aromatic alcohols. Gene Dev. 2006;20(9):1150–1161.
  • Deveau A, Hogan DA. Linking quorum sensing regulation and biofilm formation by Candida albicans. Methods Mol Biol. 2011;692:219–233.
  • Davis HA, Piispanen AE, Stateva LI, et al. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol. 2008;67(1):47–62.
  • Rde AC, Teixeira CE, Brilhante RS, et al. Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals. FEMS Yeast Res. 2015;15(4) :fov012
  • Cao YY, Cao YB, Xu Z, et al. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Ch. 2005;49(2):584–589.
  • Armbruster CR, Parsek MR. New insight into the early stages of biofilm formation. Proc Natl Acad Sci U S A. 2018;115(17):4317–4319.
  • Kot B, Sytykiewicz H, Sprawka I. Expression of the biofilm-associated genes in methicillin-resistant Staphylococcus aureus in biofilm and planktonic conditions. Int J Mol Sci. 2018;19(11):3478.
  • Pozzi C, Waters EM, Rudkin JK, et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012;8(4):e1002626.
  • Rohde H, Burandt EC, Siemssen N, et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials. 2007;28(9):1711–1720.
  • Kogan G, Sadovskaya I, Chaignon P, et al. Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett. 2006;255(1):11–16.
  • Tielen P, Rosenau F, Wilhelm S, et al. Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiology (Reading). 2010;156(7):2239–2252.
  • DeFrancesco AS, Masloboeva N, Syed AK, et al. Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proc Natl Acad Sci U S A. 2017;114(29):5969–5978.
  • Mann EE, Rice KC, Boles BR, et al. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One. 2009;4(6):e5822.
  • Prindle A, Liu J, Asally M, et al. Ion channels enable electrical communication in bacterial communities. Nature. 2015;527(7576):59–63.
  • Humphries J, Xiong L, Liu J, et al. Species-independent attraction to biofilms through electrical signaling. Cell. 2017;168(1–2):200–209.
  • Klausen M, Aaes‐Jørgensen A, Molin S, et al. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol. 2003;50(1):61–68.
  • Laura C, Estefania GH, Jordan FP, et al. Deletion of GLX3 in Candida albicans affects temperature tolerance, biofilm formation and virulence. Fems Yeast Res. 2019;19(2):124.
  • Garcia SS, Aubert S, Iraqui I, et al. Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns. Eukaryot Cell. 2004;3(2):536–545.
  • Kaplan JB, Ragunath C, Ramasubbu N, et al. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol. 2003;185(16):4693–4698.
  • Rumbaugh KP, Sauer K. Biofilm dispersion. Nat Rev Microbiol. 2020;18(10):571–586.
  • Williamson KS, Richards LA, Perez-Osorio AC, et al. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol. 2012;194(8):2062–2073.
  • Serra DO, Hengge R. Stress responses go three dimensional - the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ Microbiol. 2014;16(6):1455–1471.
  • An S, Wu J, Zhang LH. Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-Di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl Environ Microbiol. 2010;76(24):8160–8173.
  • Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 2008;4(4):e1000052.
  • Cleary J, Lai LC, Shaw RK, et al. Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiol. 2004;150(3):527–538.
  • Stuart Knutton RKS, Anantha RP, Donnenberg MS, et al. The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal. Mol Microbiol. 1999;33(3):499–509.
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: acommon cause of persistent infections. Sci. 1999;284(5418):1318–1322.
  • Uppuluri P, Acosta Zaldívar M, Anderson MZ, et al. Candida albicansdispersed cells are developmentally distinct from biofilm and planktonic cells. mBio. 2018;9(4). DOI:10.1128/mBio.01338-18.
  • Vila TVM, Rozental S. Biofilm Formation as a Pathogenicity Factor of Medically Important Fungi. InTech. 2016;1–24.
  • Finkel JS, Mitchell AP. Genetic control of Candida albicansbiofilm development. Nat Rev Microbiol. 2011;9(2):109–118.