1,046
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Angiotensin-(1-7) ameliorates high glucose-induced vascular endothelial injury through suppressing chloride channel 3

, , , , , , , , , & show all
Pages 4100-4111 | Received 17 Aug 2021, Accepted 21 Oct 2021, Published online: 15 Feb 2022

References

  • Association AD. Diagnosis and classification of diabetes mellitus. Diabetes care. 2012; 101(7–8): 274.
  • Spencer EA, Pirie KL, Stevens RJ, et al. Diabetes and modifiable risk factors for cardiovascular disease: the prospective Million Women Study. Eur J Epidemiol. 2008;23(12):793–799.
  • Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215.
  • Chen X, Yun C, Zheng H, et al. The protective effects of S14G-humanin (HNG) against streptozotocin (STZ)-induced cardiac dysfunction. Bioengineered. 2021;12(1):5491–5503.
  • Kovacic JC, Castellano JM, Farkouh ME, et al. The relationships between cardiovascular disease and diabetes: focus on pathogenesis. Endocrinol Metab Clin North Am. 2014;43(1):41–57.
  • Goldfine BA. Cardiovascular disease in the diabetic patient. Circulation. 2003;107(2):14e–6.
  • Lv X, Gao Y, Dong T, et al. Role of Natural Killer T (NKT) Cells in Type II Diabetes-Induced Vascular Injuries. Med Sci Monit. 2018;24:8322.
  • Lee S, Zhang H, Chen J, et al. Adiponectin abates diabetes-induced endothelial dysfunction by suppressing oxidative stress, adhesion molecules, and inflammation in type 2 diabetic mice. Ajp Heart Circulatory Physiol. 2012;303(1):H106–H15.
  • Du YH, Ma XL. [Mechanisms of adiponectin protection against diabetes-induced vascular endothelial injury]. Sheng li xue bao: [Acta physiologica Sinica]. 2019;71(3):485–490.
  • Liu X, Yang R, Bai W, et al. Exploring the role of orexin B-sirtuin 1-HIF-1alpha in diabetes-mellitus induced vascular endothelial dysfunction and associated myocardial injury in rats. Life Sci. 2019;254:117041.
  • Zhao H, Ma T, Fan B, et al. Protective effect of trans-δ-viniferin against high glucose-induced oxidative stress in human umbilical vein endothelial cells through the SIRT1 pathway. Free Radic Res. 2015;50(1):68–83.
  • Zhang Y, Liu T, Chen Y, et al. CD226 reduces endothelial cell glucose uptake under hyperglycemic conditions with inflammation in type 2 diabetes mellitus. Oncotarget. 2016;7(11):12010–12023.
  • Bhatt MP, Lim YC, Hwang JY, et al. C-peptide prevents hyperglycemia-induced endothelial apoptosis through inhibition of reactive oxygen species–mediated transglutaminase 2 activation. Diabetes. 2013;62(1):243–253.
  • Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 2006;27(12):0–558.
  • Wu Y, Hao R, Lan B, et al. The protective effects of naproxen against interleukin-1beta (IL-1beta)- induced damage in human umbilical vein endothelial cells (HUVECs). Bioengineered. 2021;12(1):5361–5372.
  • Augustin HG, Young Koh G, Thurston G, et al. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat Rev Mol Cell Biol. 2009;10(3):165–177.
  • Lee S-W, Won J-Y, Lee H-Y, et al. Angiopoietin-1 protects heart against ischemia/reperfusion injury through VE-cadherin dephosphorylation and myocardiac integrin-β1/ERK/caspase-9 phosphorylation cascade. Mol Med. 2011;17(9–10):1095–1106.
  • Li Y, Cao Y, Zeng Z, et al. Angiotensin-converting enzyme 2/Angiotensin-(1–7)/Mas axis prevents lipopolysaccharide–induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF–κB pathways. Sci Rep. 2015;5(1):8209.
  • Yang G, Chu PL, Rump LC, et al. ACE2 and the homolog collectrin in the modulation of nitric oxide and oxidative stress in blood pressure homeostasis and vascular injury. Antioxid Redox Signaling. 2017;26(12):645–659.
  • Jin HY, Bei S, Oudit GY, et al. ACE2 deficiency enhances Angiotensin II-mediated aortic profilin-1 expression, inflammation and peroxynitrite production. Plos One. 2012;7(6):e38502.
  • Yang G, Istas G, H?ges S, et al. Angiotensin-(1-7)-induced Mas receptor activation attenuates atherosclerosis through a nitric oxide-dependent mechanism in apolipoproteinE-KO mice. Pflugers Arch.
  • Tikellis C, Pickering R, Tsorotes D, et al. Interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clin sci. 2012;123(8):519.
  • Guan YY, Wang G-L, Zhou J-G. The ClC-3 Cl? channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells. Trends pharmacol sci. 2006; 27(6):0–296.
  • Wang GL, Wang XR, Lin MJ, et al. Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ Res. 2002;91(10):E28–32.
  • Borren V. Reduced swelling-activated Cl? Current densities in hypertrophied ventricular myocytes of rabbits with heart failure. Cardiovasc Res. 2002;53(4):869–878.
  • Yamamoto‐Mizuma S, Wang GX, Liu LL, et al. Altered properties of volume‐sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3‐/‐ mice. Journal of Physiology. 2004;557(Pt 2):439-56.
  • Liang GZ, Cheng LM, Chen XF, et al. ClC-3 promotes Angiotensin II-induced reactive oxygen species production in endothelial cells by facilitating Nox2 NADPH oxidase complex formation. Acta Pharmacol Sin. 2018;39(11):1725–1734.
  • Yang H, Huang LY, Zeng DY, et al. Decrease of intracellular chloride concentration promotes endothelial cell inflammation by activating nuclear factor- b pathway. Hypertension. 2012;60(5):1287–1293.
  • Hawkins BJ, Madesh M, Kirkpatrick CJ, et al. Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol Biol Cell. 2007;18(6):2002–2012.
  • Chen J, Zhang W, Xu Q, et al. Ang-(1-7) protects HUVECs from high glucose-induced injury and inflammation via inhibition of the JAK2/STAT3 pathway. Int J Mol Med. 2018;41(5):2865–2878.
  • Wang Z, Cao Y, Zhang K, et al. Gold nanoparticles alleviates the lipopolysaccharide-induced intestinal epithelial barrier dysfunction. Bioengineered. 2021;12(1):6472–6483.
  • Guo Y, Zhu X, Sun X. COTI-2 induces cell apoptosis in pediatric acute lymphoblastic leukemia via upregulation of miR-203. Bioengineered. 2020;11(1):201–208.
  • Zhou Q, Zhang L. MicroRNA-183-5p protects human derived cell line SH-SY5Y cells from mepivacaine-induced injury. Bioengineered. 2021;12(1):3177–3187.
  • Jung S, Shin J, Oh J, et al. Cytotoxic and apoptotic potential of Phyllodium elegans extracts on human cancer cell lines. Bioengineered. 2019;10(1):501–512.
  • Zhong J, Xu C, Gabbay-Benziv R, et al. Superoxide dismutase 2 overexpression alleviates maternal diabetes-induced neural tube defects, restores mitochondrial function and suppresses cellular stress in diabetic embryopathy. Free Radic Biol Med. 2016;96:234–244.
  • Tousoulis D, Kampoli AM, Tentolouris C, et al. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10(1):4–18.
  • Yu J, Piao BK, Pei YX, et al. Protective effects of tetrahydropalmatine against gamma-radiation induced damage to human endothelial cells. Life Sci. 2010;87(1–2):55–63.
  • de Klaver MJ, Buckingham MG, Rich GF. Lidocaine attenuates cytokine-induced cell injury in endothelial and vascular smooth muscle cells. Anesth Analg. 2003;97(2):465–470. table of contents
  • Bratt J, Palmblad J. Cytokine-induced neutrophil-mediated injury of human endothelial cells. J Iimmunol. 1997;159(2):912–918.
  • Bessa ASM, Jesus EF, Nunes ADC, et al. Stimulation of the ACE2/Ang-(1-7)/Mas axis in hypertensive pregnant rats attenuates cardiovascular dysfunction in adult male offspring. Hypertens Res. 2019;42(12):1883–1893.
  • Jiang M, Huang W, Wang Z, et al. Anti-inflammatory effects of Ang-(1-7) via TLR4-mediated inhibition of the JNK/FoxO1 pathway in lipopolysaccharide-stimulated RAW264.7cells. Dev Comp Immunol. 2019;92:291–298.
  • Hay M, Polt R, Heien ML, et al. A novel Angiotensin-(1-7) glycosylated mas receptor agonist for treating vascular cognitive impairment and inflammation-related memory dysfunction. J Pharmacol Exp Ther. 2019;369(1):9–25.
  • Ma MM, Lin CX, Liu CZ, et al. Threonine532 phosphorylation in ClC-3 channels is required for Angiotensin II-induced Cl(-) current and migration in cultured vascular smooth muscle cells. Br J Pharmacol. 2016;173(3):529–544.
  • Duan D, Cowley S, Horowitz B, et al. A serine residue in ClC-3 links phosphorylation-dephosphorylation to chloride channel regulation by cell volume. J Gen Physiol. 1999;113(1):57–70.
  • Tao X, Fan J, Kao G, et al. Angiotensin-(1-7) attenuates Angiotensin II-induced signalling associated with activation of a tyrosine phosphatase in Sprague-Dawley rats cardiac fibroblasts. Biol Cell. 2014;106(6):182–192.
  • Sun T, Fu J, Shen T, et al. The small C-terminal domain phosphatase 1 inhibits cancer cell migration and invasion by dephosphorylating Ser(P)68-twist1 to accelerate twist1 protein degradation. J Biol Chem. 2016;291(22):11518–11528.
  • Gao T, Brognard J, Newton AC. The phosphatase PHLPP controls the cellular levels of protein kinase C. J Biol Chem. 2008;283(10):6300–6311.
  • Wundenberg T, Grabinski N, Lin H, et al. Discovery of InsP6-kinases as InsP6-dephosphorylating enzymes provides a new mechanism of cytosolic InsP6 degradation driven by the cellular ATP/ADP ratio. Biochem J. 2014;462(1):173–184.
  • Li Q, Lin Y, Wang S, et al. GLP-1 inhibits high-glucose-induced oxidative injury of vascular endothelial cells. Sci Rep. 2017;7(1):8008.
  • Liu J, Zhang FF, Li L, et al. ClC-3 deficiency prevents apoptosis induced by Angiotensin II in endothelial progenitor cells via inhibition of NADPH oxidase. Apoptosis. 2013;18(10):1262–1273.
  • Zhang L, Wang J, Liang J, et al. Propofol prevents human umbilical vein endothelial cell injury from Ang II-induced apoptosis by activating the ACE2-(1-7)-Mas axis and eNOS phosphorylation. PLoS One. 2018;13(7):e0199373.
  • Zou X, Wang J, Chen C, et al. Secreted Monocyte miR-27a, via Mesenteric Arterial Mas Receptor-eNOS Pathway, Causes Hypertension. Am J Hypertens. 2019;33(1):31-42.
  • Liu J, Zhang D, Li Y, et al. Discovery of bufadienolides as a novel class of ClC-3 chloride channel activators with antitumor activities. J Med Chem. 2013;56(14):5734–5743.
  • Wu ZT, Ren CZ, Yang YH, et al. The PI3K signaling-mediated nitric oxide contributes to cardiovascular effects of Angiotensin-(1-7) in the nucleus tractus solitarii of rats. Nitric Oxide. 2016;52:56–65.
  • Miller FJ Jr., Filali M, Huss GJ, et al. Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res. 2007;101(7):663–671.
  • Xiang NL, Liu J, Liao YJ, et al. Abrogating ClC-3 inhibits LPS-induced inflammation via blocking the TLR4/NF-kappaB pathway. Sci Rep. 2016;6:27583.
  • Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol. 2019;113:104350.