3,110
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

N6-methyladenosine reader YTH N6-methyladenosine RNA binding protein 3 or insulin like growth factor 2 mRNA binding protein 2 knockdown protects human bronchial epithelial cells from hypoxia/reoxygenation injury by inactivating p38 MAPK, AKT, ERK1/2, and NF-κB pathways

, , , , , & ORCID Icon show all
Pages 11973-11986 | Received 06 Aug 2021, Accepted 23 Oct 2021, Published online: 19 May 2022

References

  • Den Hengst WA, Gielis JF, Lin JY, et al. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol-Heart C. 2010;299(5):H1283–1299.
  • Weyker PD, Webb CA, Kiamanesh D, et al. Lung ischemia reperfusion injury: a bench-to-bedside review. Semin Cardiothorac Vasc Anesth. 2013;17(1):28–43.
  • Laubach VE, Sharma AK. Mechanisms of lung ischemia-reperfusion injury. Curr Opin Organ Tran. 2016;21(3):246–252.
  • Zhang W, Zhang JQ, Meng FM, et al. Dexmedetomidine protects against lung ischemia-reperfusion injury by the PI3K/Akt/HIF-1α signaling pathway. J ANESTH. 2016;30(5):826–833.
  • Gelman AE, Fisher AJ, Huang HJ, et al. Report of the ISHLT working group on primary lung graft dysfunction part III: mechanisms: a 2016 consensus group statement of the international society for heart and lung transplantation. J Heart Lung Transpl. 2017;36(10):1114–1120.
  • Karthiya R, Khandelia P. m6A rna methylation: ramifications for gene expression and human health. Mol Biotechnol. 2020;62(10):467–484.
  • Zhang C, Fu J, Zhou Y. A review in research progress concerning m6A methylation and immunoregulation. Front Immunol. 2019;10:922.
  • Yao W, Han X, Ge M, et al. N(6)-methyladenosine (m(6)A) methylation in ischemia-reperfusion injury. Cell Death Dis. 2020;11(6):478.
  • Xu Y, Yuan XD, Wu JJ, et al. The N6-methyladenosine mRNA methylase METTL14 promotes renal ischemic reperfusion injury via suppressing YAP1. J Cell Biochem. 2020;121(1):524–533.
  • Xu K, Mo Y, Li D, et al. N(6)-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury. Ther Adv Chronic Dis. 2020;11:2040622320916024.
  • Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L379–L399.
  • Fischer S, Cassivi SD, Xavier AM, et al. Cell death in human lung transplantation: apoptosis induction in human lungs during ischemia and after transplantation. Ann Surg. 2000;231(3):424–431.
  • Sakuma T, Takahashi K, Ohya N, et al. Ischemia-reperfusion lung injury in rabbits: mechanisms of injury and protection. Am J Physiol. 1999;276(1):L137–145.
  • An S, Hishikawa Y, Liu J, et al. Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type II alveolar epithelial cells mediated by TNF-alpha and activation of Bid pathway. Apoptosis. 2007;12(11):1989–2001.
  • Almeida FM, Oliveira-Junior MC, Souza RA, et al. Creatine supplementation attenuates pulmonary and systemic effects of lung ischemia and reperfusion injury. J Heart Lung Transplant. 2016;35(2):242–250.
  • Dong H, Qiang Z, Chai D, et al. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging (Albany NY). 2020;12(13):12943–12959.
  • Xia T, Cao Y, Li J, et al. Etomidate regulates miR-192-5p expression to reduce hypoxia-reoxygenation induced bronchial epithelial cell damage. J Biomater Tiss Eng. 2021;11(3):458–465.
  • Lian P-Q, Fan Y-N, Hui Y, et al. 2, 3, 5, 4ʹ-Tetrahydroxystilbene-2-O-β-D-glycoside attenuates the apoptotic responses of hypoxia/reoxygenation injury in bronchial epithelial cells through MAPK, HIF-1α and p53 pathway. Acta Pharm Sin. 2017(12):1122–1132.
  • Li A, Chen YS, Ping XL, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27(3):444–447.
  • Bi Z, Liu Y, Zhao Y, et al. A dynamic reversible RNA N(6) -methyladenosine modification: current status and perspectives. J Cell Physiol. 2019;234(6):7948–7956.
  • Wang T, Liu C, Pan LH, et al. Inhibition of p38 MAPK mitigates lung ischemia reperfusion injury by reducing blood-air barrier hyperpermeability. Front Pharmacol. 2020;11:569251.
  • Song L, Li D, Wang J, et al. Effects of p38 mitogen-activated protein kinase on lung ischemia-reperfusion injury in diabetic rats. J Surg Res. 2017;216:9–17.
  • Liang S, Wang Y, Liu Y. Dexmedetomidine alleviates lung ischemia-reperfusion injury in rats by activating PI3K/Akt pathway. Eur Rev Med Pharmacol Sci. 2019;23(1):370–377.
  • Okada M, Yamane M, Yamamoto S, et al. SPRED2 deficiency may lead to lung ischemia-reperfusion injury via ERK1/2 signaling pathway activation. Surg Today. 2018;48(12):1089–1095.
  • Yang C, Yang W, He Z, et al. Kaempferol improves lung ischemia-reperfusion injury via antiinflammation and antioxidative stress regulated by SIRT1/HMGB1/NF-κB axis. Front Pharmacol. 2019;10:1635.
  • Chen W, Yang S, Ping W, et al. CYP2J2 and EETs protect against lung ischemia/reperfusion injury via anti-inflammatory effects in vivo and in vitro. Cell Physiol Biochem. 2015;35(5):2043–2054.
  • Wang W, Han J, Wang L, et al. Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells. Iran J Basic Med Sci. 2017;20(3):272–279.
  • Li X, Ji H, Li C, et al. Chemerin expression in Chinese pregnant women with and without gestational diabetes mellitus. Ann Endocrinol. 2015;76(1):19–24.
  • Zhang C, Hao Y, Sun Y, et al. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis. J Pharmacol Sci. 2019;140(2):128–136.
  • Xie F, Zhao N, Zhang H, et al. Circular RNA CircHIPK3 promotes gemcitabine sensitivity in bladder cancer. J Cancer. 2020;11(7):1907–1912.
  • Gao X, Zhang X, Hu J, et al. Aconitine induces apoptosis in H9c2 cardiac cells via mitochondria‑mediated pathway. Mol Med Rep. 2018;17(1):284–292.
  • Zheng Y, Lu L, Yan Z, et al. mPEG-icariin nanoparticles for treating myocardial ischaemia. Artif Cells Nanomed Biotechnol. 2019;47(1):801–811.
  • Li TM, Chen GW, Su CC, et al. Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anticancer Res. 2005;25(2A):971–979.
  • Ghanaat J, Khalilzadeh MA, Zareyee D, et al. Cell cycle inhibition, apoptosis, and molecular docking studies of the novel anticancer bioactive 1, 2, 4-triazole derivatives. Struct Chem. 2020;31:691–699.
  • Hu Y, Guo J, Yin L, et al. Tacrolimus inhibits TNF-α/IL-17A-produced pro-inflammatory effect on human keratinocytes by regulating IκBζ. Inflammation. 2020;43(2):692–700.
  • Shen K, Tang Q, Fang X, et al. The sustained release of dexamethasone from TiO(2) nanotubes reinforced by chitosan to enhance osteoblast function and anti-inflammation activity. Mater Sci Eng C Mater Biol Appl. 2020;116:111241.
  • Wang J, He C, Zhou T, et al. NGF increases VEGF expression and promotes cell proliferation via ERK1/2 and AKT signaling in Müller cells. Mol Vis. 2016;22:254–263.
  • Cao MM, Lu X, Liu GD, et al. Resveratrol attenuates type 2 diabetes mellitus by mediating mitochondrial biogenesis and lipid metabolism via Sirtuin type 1. Exp Ther Med. 2018;15(1):576–584.
  • Ng CS, Wang S, Arifi AA, et al. Inflammatory response to pulmonary ischemia-reperfusion injury. Surg Today. 2006;36(3):205–214.
  • Krishnadasan B, Naidu BV, Byrne K, et al. The role of proinflammatory cytokines in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2003;125(2):261–272.
  • Naidu BV, Woolley SM, Farivar AS, et al. Early tumor necrosis factor-alpha release from the pulmonary macrophage in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2004;127(5):1502–1508.
  • Maxey TS, Enelow RI, Gaston B, et al. Tumor necrosis factor-alpha from resident lung cells is a key initiating factor in pulmonary ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2004;127(2):541–547.
  • Zheng DY, Zhou M, Jin J, et al. Inhibition of P38 MAPK downregulates the expression of IL-1β to protect lung from acute injury in intestinal ischemia reperfusion rats. Mediators Inflamm. 2016;2016:9348037.
  • Ni W, Yao S, Zhou Y, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer. 2019;18(1):143.
  • Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320–328.
  • Sun Y, Liu WZ, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600–604.
  • Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429(3):403–417.
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.
  • Liao S, Sun H, Xu C, et al. A Family of N(6)-methyladenosine (m(6)A) readers. Genomics Proteomics Bioinformatics. 2018;16(2):99–107.
  • Zhang Z, Wang Q, Zhao X, et al. YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA. Cell Death Dis. 2020;11(11):977.
  • Zheng L, Tang X, Lu M, et al. microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A Reader YTHDF1 to inhibit p65 mRNA translation. Int Immunopharmacol. 2020;88:106937.
  • Hazra D, Chapat C, Graille M. m6A mRNA destiny: chained to the rhYTHm by the YTH-containing proteins. Genes (Basel). 2019;10(1):49.
  • Anders M, Chelysheva I, Goebel I, et al. Dynamic m(6)A methylation facilitates mRNA triaging to stress granules. Life Sci Alliance. 2018;1(4):e201800113.
  • Ferrari RS, Andrade CF. Oxidative Stress and Lung Ischemia-Reperfusion Injury. Oxid Med Cell Longev. 2015;2015:590987.
  • Cao J, Mu Q. The roles of insulin-like growth factor 2 mRNA-binding protein 2 in cancer and cancer stem cells. Stem Cells Int. 2018;2018:4217259.
  • Dai N. The diverse functions of IMP2/IGF2BP2 in metabolism. Trends Endocrinol Metab. 2020;31(9):670–679.
  • Zhu X, Yan J, Bregere C, et al. RBM3 promotes neurogenesis in a niche-dependent manner via IMP2-IGF2 signaling pathway after hypoxic-ischemic brain injury. Nat Commun. 2019;10(1):3983.
  • Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001;11(9):372–377.
  • Cheng CY, Hsieh HL, Sun CC, et al. IL-1 beta induces urokinase-plasminogen activator expression and cell migration through PKC alpha, JNK1/2, and NF-kappaB in A549 cells. J Cell Physiol. 2009;219(1):183–193.
  • Kalogeris T, Baines CP, Krenz M, et al. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229–317.
  • Kong T, Liu M, Ji B, et al. Role of the extracellular signal-regulated kinase 1/2 signaling pathway in ischemia-reperfusion injury. Front Physiol. 2019;10:1038.
  • Zhao EY, Efendizade A, Cai L, et al. The role of Akt (protein kinase B) and protein kinase C in ischemia-reperfusion injury. Neurol Res. 2016;38(4):301–308.
  • Nichols TC. NF-kappaB and reperfusion injury. Drug News Perspect. 2004;17(2):99–104.
  • Lv N, Li X. Isoflurane suppresses lung ischemia-reperfusion injury by inactivating NF-κB and inhibiting cell apoptosis. Exp Ther Med. 2020;20(5):74.
  • Otani Y, Takeyoshi I, Koibuchi Y, et al. The effect of FR167653 on pulmonary ischemia-reperfusion injury in rats. J Heart Lung Transplant. 2000;19(4):377–383.
  • Kawashima Y, Takeyoshi I, Otani Y, et al. FR167653 attenuates ischemia and reperfusion injury of the rat lung with suppressing p38 mitogen-activated protein kinase. J Heart Lung Transplant. 2001;20(5):568–574.
  • Wang F, Wang F, Li F, et al. Methane attenuates lung ischemia-reperfusion injury via regulating PI3K-AKT-NFκB signaling pathway. J Recept Signal Transduct Res. 2020;40(3):209–217.