1,481
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

MiR-410-3p facilitates Angiotensin II–induced cardiac hypertrophy by targeting Smad7

, , & ORCID Icon
Pages 119-127 | Received 07 Oct 2021, Accepted 18 Nov 2021, Published online: 24 Dec 2021

References

  • Lin KH, Kumar VB, Shanmugam T, et al. miR-145-5p targets paxillin to attenuate angiotensin II-induced pathological cardiac hypertrophy via downregulation of Rac 1, pJNK, p-c-Jun, NFATc3, ANP and by Sirt-1 upregulation. Mol Cell Biochem. 2021. DOI:10.1007/s11010-021-04100-w.
  • Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223–237.
  • Zheng CB, Gao WC, Xie M, et al. Ang II promotes cardiac autophagy and hypertrophy via Orai1/STIM1. Front Pharmacol. 2021;12:622774.
  • Siti HN, Jalil J, Asmadi AY, et al. Rutin modulates MAPK pathway differently from quercetin in angiotensin II-induced H9c2 cardiomyocyte hypertrophy. Int J Mol Sci. 2021;22(10). DOI:10.3390/ijms22105063.
  • Huskov Z, Kikerlov S, Sadowski J, et al. Increased endogenous activity of the renin-angiotensin system reduces infarct size in the rats with early angiotensin II-dependent hypertension which survive the acute ischemia/reperfusion injury. Front Pharmacol. 2021;12:679060.
  • Nie S, Cui X, Guo J, et al. Long non-coding RNA AK006774 inhibits cardiac ischemia-reperfusion injury via sponging miR-448. Bioengineered. 2021;12(1):4972–4982.
  • Pan J, Xu Z, Guo G, et al. Circ_nuclear factor I X (circNfix) attenuates pressure overload-induced cardiac hypertrophy via regulating miR-145-5p/ATF3 axis. Bioengineered. 2021;12(1):5373–5385.
  • Shen J, Zhang P, Li Y, et al. Neuroprotective effects of microRNA-211-5p on chronic stress-induced neuronal apoptosis and depression-like behaviours. J Cell Mol Med. 2021. DOI:10.1111/jcmm.16716.
  • Niu X, Huang B, Qiao X, et al. MicroRNA-1-3p suppresses malignant phenotypes of ameloblastoma through down-regulating lysosomal associated membrane protein 2-mediated autophagy. Front Med (Lausanne). 2021;8:670188.
  • Yu H, Qin L, Peng Y, et al. Exosomes derived from hypertrophic cardiomyocytes induce inflammation in macrophages via miR-155 mediated MAPK pathway. Front Immunol. 2020;11:606045.
  • Schumacher D, Curaj A, Simsekyilmaz S, et al. miR155 deficiency reduces myofibroblast density but fails to improve cardiac function after myocardial infarction in dyslipidemic mouse model. Int J Mol Sci. 2021;22(11). DOI:10.3390/ijms22115480.
  • Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 2007;100(3):416–424.
  • Ramasamy S, Velmurugan G, Rekha B, et al. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy. Exp Cell Res. 2018;365(1):46–56.
  • Ramasamy S, Velmurugan G, Shanmugha Rajan K, et al. MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts. PLoS One. 2015;10(3):e0121401.
  • Wang Y, Shang G, Wang W, et al. Magnoflorine inhibits the malignant phenotypes and increases cisplatin sensitivity of osteosarcoma cells via regulating miR-410-3p/HMGB1/NF-κB pathway. Life Sci. 2020;256:117967.
  • Grzywa TM, Klicka K, Paskal W. miR-410-3p is induced by vemurafenib via ER stress and contributes to resistance to BRAF inhibitor in melanoma. PLoS One. 2020;15(6):e0234707.
  • Li L, Li L, Zhang YZ, et al. Long non-coding RNA FTX alleviates hypoxia/reoxygenation-induced cardiomyocyte injury via miR-410-3p/Fmr1 axis. Eur Rev Med Pharmacol Sci. 2020;24(1):396–408.
  • Zuo T, Tang Q, Zhang X, et al. MicroRNA-410-3p binds to TLR2 and alleviates myocardial mitochondrial dysfunction and chemokine production in LPS-induced sepsis. Mol Ther Nucleic Acids. 2020;22:273–284.
  • Su SH, Wu CH, Chiu YL, et al. Dysregulation of vascular endothelial growth factor receptor-2 by multiple miRNAs in endothelial colony-forming cells of coronary artery disease. J Vasc Res. 2017;54(1):22–32.
  • Jia G, Meng Z, Liu C, et al. Nicotine induces cardiac toxicity through blocking mitophagic clearance in young adult rat. Life Sci. 2020;257:118084.
  • Yu XJ, Huang YQ, Shan ZX, et al. MicroRNA-92b-3p suppresses angiotensin II-induced cardiomyocyte hypertrophy via targeting HAND2. Life Sci. 2019;232:116635.
  • Yu Y, Ou-Yang WX, Zhang H, et al. MiR-125b enhances autophagic flux to improve septic cardiomyopathy via targeting STAT3/HMGB1. Exp Cell Res. 2021;112842. DOI:10.1016/j.yexcr.2021.112842.
  • Jiang S, Guo T, Guo S, et al. Chronic variable stress induces hepatic Fe(II) deposition by up-regulating ZIP14 expression via miR-181 family pathway in rats. Biology (Basel). 2021;10(7). DOI:10.3390/biology10070653.
  • Ferreira JC, Brum PC, Mochly-Rosen D. βIIPKC and εPKC isozymes as potential pharmacological targets in cardiac hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51(4):479–484.
  • Ding Y, Wang J, Lu J. miR-337-5p promotes the development of cardiac hypertrophy by targeting Ubiquilin-1 (UBQLN1). Bioengineered. 2021;12(1):6771–6781.
  • Wang Y, Zhen D, Fu D, et al. 1, 8-cineole attenuates cardiac hypertrophy in heart failure by inhibiting the miR-206-3p/SERP1 pathway. Phytomedicine. 2021;91:153672.
  • Li H, Li Y, Tian D, et al. miR-940 is a new biomarker with tumor diagnostic and prognostic value. Mol Ther Nucleic Acids. 2021;25:53–66.
  • Ma ZH, Shi PD, Wan BS. MiR-410-3p activates the NF-κB pathway by targeting ZCCHC10 to promote migration, invasion and EMT of colorectal cancer. Cytokine. 2021;140:155433.
  • Wang Y, Hou L, Yuan X, et al. LncRNA NEAT1 targets fibroblast-like synoviocytes in rheumatoid arthritis via the miR-410-3p/YY1 axis. Front Immunol. 2020;11:1975.
  • Xiao QX, Wen S, Zhang XR, et al. MiR-410-3p overexpression ameliorates neurological deficits in rats with hypoxic-ischemic brain damage. Brain Res Bull. 2020;162:218–230.
  • Teng YL, Ren F, Xu H, et al. Overexpression of miRNA-410-3p protects hypoxia-induced cardiomyocyte injury via targeting TRAF5. Eur Rev Med Pharmacol Sci. 2019;23(20):9050–9057.
  • Wang P, Luo L, Shen Q, et al. Rosuvastatin improves myocardial hypertrophy after hemodynamic pressure overload via regulating the crosstalk of Nrf2/ARE and TGF-β/ smads pathways in rat heart. Eur J Pharmacol. 2018;820:173–182.
  • Stolfi C, Marafini I, de Simone V, et al. The dual role of Smad7 in the control of cancer growth and metastasis. Int J Mol Sci. 2013;14(12):23774–23790.
  • Zheng RH, Bai XJ, Zhang WW, et al. Liraglutide attenuates cardiac remodeling and improves heart function after abdominal aortic constriction through blocking angiotensin II type 1 receptor in rats. Drug Des Devel Ther. 2019;13:2745–2757.
  • Xu Y, Qu X, Zhou J, et al. Pilose antler peptide-3.2KD ameliorates adriamycin-induced myocardial injury through TGF-β/SMAD signaling pathway. Front Cardiovasc Med. 2021;8:659643.
  • Zeng N, Wen YH, Pan R, et al. Dickkopf 3: a novel target gene of miR-25-3p in promoting fibrosis-related gene expression in myocardial fibrosis. J Cardiovasc Transl Res. 2021. DOI:10.1007/s12265-021-10116-w.
  • Chen G, Huang S, Song F, et al. Lnc-Ang362 is a pro-fibrotic long non-coding RNA promoting cardiac fibrosis after myocardial infarction by suppressing Smad7. Arch Biochem Biophys. 2020;685:108354.