2,406
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Prostate-specific membrane antigen modulates the progression of prostate cancer by regulating the synthesis of arginine and proline and the expression of androgen receptors and Fos proto-oncogenes

ORCID Icon, , , &
Pages 995-1012 | Received 04 Oct 2021, Accepted 04 Dec 2021, Published online: 03 Jan 2022

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.
  • Santos AF, Huang H, Tindall DJ. The androgen receptor: a potential target for therapy of prostate cancer. Steroids. 2004;69(2):79–85.
  • sDel Re M, Conteduca V, Crucitta S, et al. Androgen receptor gain in circulating free DNA and splicing variant 7 in exosomes predict clinical outcome in CRPC patients treated with Abiraterone and enzalutamide. Prostate Cancer Prostatic Dis. 2021;24(2):524–531.
  • Tian S, Lei Z, Gong Z, et al. Clinical implication of prognostic and predictive biomarkers for castration-resistant prostate cancer: a systematic review. Cancer Cell Int. 2020;20(1):409.
  • Carlsson SV, Tafe LJ, Chade DC, et al. Pathological features of lymph node metastasis for predicting biochemical recurrence after radical prostatectomy for prostate cancer. J Urol. 2013;189(4):1314–1318.
  • Sun Y, Chen G, He J, et al. Clinical significance and potential molecular mechanism of miRNA-222-3p in metastatic prostate cancer. Bioengineered. 2021;12(1):325–340.
  • Liu J, Li J, Ma Y, et al. MicroRNA miR-145-5p inhibits Phospholipase D 5 (PLD5) to downregulate cell proliferation and metastasis to mitigate prostate cancer. Bioengineered. 2021;12(1):3240–3251.
  • Fu D, Zang L, Li Z, et al. Long non-coding RNA CRNDE regulates the growth and migration of prostate cancer cells by targeting microRNA-146a-5p. Bioengineered. 2021;12(1):2469–2479.
  • Rahbar K, Afshar-Oromieh A, Jadvar H, et al. PSMA Theranostics: current Status and Future Directions. Mol Imaging. 2018;17:1536012118776068.
  • Afshar-Oromieh A, Babich JW, Kratochwil C, et al. The Rise of PSMA Ligands for Diagnosis and Therapy of Prostate Cancer. J Nucl Med. 2016;57(Supplement 3):79s–89s.
  • Caromile LA, Dortche K, Rahman MM, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10(470). DOI:10.1126/scisignal.aag3326.
  • Grauer LS, Lawler KD, Marignac JL, et al. Identification, purification, and subcellular localization of prostate-specific membrane antigen PSM’ protein in the LNCaP prostatic carcinoma cell line. Cancer Res. 1998;58(21):4787–4789.
  • Qiu F, Chen Y-R, Liu X, et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal. 2014;7(319):ra31.
  • Ding M, Jiang C-Y, Zhang Y, et al. SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by suppressing the AR signaling in prostate cancer. J Exp Clin Cancer Res. 2020;39(1):28.
  • Shen X, Wang R, Xiong X, et al. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun. 2019;10(1):1516.
  • Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. 2017;8(1). DOI:10.1002/wrna.1364
  • Zhao Z, Zhang P, Li W, et al. Pegylated Recombinant Human Arginase 1 Induces Autophagy and Apoptosis via the ROS-Activated AKT/mTOR Pathway in Bladder Cancer Cells. Oxid Med Cell Longev. 2021;2021:5510663.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.
  • Yang PC, Yang PC. Western blot: technique, theory, and trouble shooting. N Am J Med Sci. 2012;4(9):429–434.
  • Han Y, Wen X, Li X, et al. Circular RNA hsa_circ_0075542 acts as a sponge for microRNA-1197 to suppress malignant characteristics and promote apoptosis in prostate cancer cells. Bioengineered. 2021;12(1):5620–5631.
  • Zhang SF, Zhang K, Cheng HM, et al. Comparative transcriptomics reveals colony formation mechanism of a harmful algal bloom species Phaeocystis globosa. Sci Total Environ. 2020;719:137454.
  • Martinotti S, Ranzato E. Scratch Wound Healing Assay. Methods Mol Biol. 2020;2109:225–229.
  • Wynant GE, Murphy GP, Horoszewicz JS, et al. Immunoscintigraphy of prostatic cancer: preliminary results with 111In-labeled monoclonal antibody 7E11-C5.3 (CYT-356). Prostate. 1991;18(3):229–241.
  • Wolf P, Freudenberg N, Bühler P, et al. Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Prostate. 2010;70(5):562–569.
  • Bostwick DG, Pacelli A, Blute M, et al. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82(11):2256–2261.
  • Yao V, Bacich DJ. Prostate specific membrane antigen (PSMA) expression gives prostate cancer cells a growth advantage in a physiologically relevant folate environment in vitro. Prostate. 2006;66(8):867–875.
  • Lee SJ, Zhang Y, Lee SD, et al. Targeting prostate cancer with conditionally replicative adenovirus using PSMA enhancer. Mol Ther. 2004;10(6):1051–1058.
  • Bakht MK, Derecichei I, Li Y, et al. Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr Relat Cancer. 2018;26(2):131–146.
  • Bronsert P, Reichel K, Ruf J. Loss of PSMA Expression in Non-neuroendocrine Dedifferentiated Acinar Prostate Cancer. Clin Nucl Med. 2018;43(7):526–528.
  • Tourinho-Barbosa RR, de La Rosette J, Sanchez-Salas R. Prostate cancer multifocality, the index lesion, and the microenvironment. Curr Opin Urol. 2018;28(6):499–505.
  • Margolis DJ. Multiparametric MRI for localized prostate cancer: lesion detection and staging. Biomed Res Int. 2014;2014:684127.
  • Tsui P, Rubenstein M, Guinan P. Correlation between PSMA and VEGF expression as markers for LNCaP tumor angiogenesis. J Biomed Biotechnol. 2005;2005(3):287–290.
  • Huang H, Guma SR, Melamed J, et al. NKX3.1 and PSMA are sensitive diagnostic markers for prostatic carcinoma in bone metastasis after decalcification of specimens. Am J Clin Exp Urol. 2018;6(5):182–188.
  • Hammes J, Täger P, Drzezga A. EBONI: a Tool for Automated Quantification of Bone Metastasis Load in PSMA PET/CT. J Nucl Med. 2018;59(7):1070–1075.
  • Pomykala KL, Czernin J, Grogan TR, et al. Total-Body 68 Ga-PSMA-11 PET/CT for Bone Metastasis Detection in Prostate Cancer Patients: potential Impact on Bone Scan Guidelines. J Nucl Med. 2020;61(3):405–411.
  • Lynch CC, Hikosaka A, Acuff HB, et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell. 2005;7(5):485–496.
  • Tregunna R. Serum MMP7 levels could guide metastatic therapy for prostate cancer. Nat Rev Urol. 2020;17:658.
  • Roomi MW, Ivanov V, Kalinovsky T, et al. Anti-tumor effect of ascorbic acid, lysine, proline, arginine, and epigallocatechin gallate on prostate cancer cell lines PC-3, LNCaP, and DU145. Res Commun Mol Pathol PharmacolResearch. 2004;115-116:251–264.
  • Yu HN, Zhang LC, Yang JG, et al. Effect of laminin tyrosine-isoleucine-glycine-serine-arginine peptide on the growth of human prostate cancer (PC-3) cells in vitro. Eur J Pharmacol. 2009;616(1–3):251–255.
  • Mavrou A, Brakspear K, Hamdollah-Zadeh M, et al. Serine-arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer. Oncogene. 2015;34(33):4311–4319.
  • Bullock N, Potts J, Simpkin AJ, et al. Serine-arginine protein kinase 1 (SRPK1), a determinant of angiogenesis, is upregulated in prostate cancer and correlates with disease stage and invasion. J Clin Pathol. 2016;69(2):171–175.
  • Deng X, Shao G, Zhang H-T, et al. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth. Oncogene. 2017;36(9):1223–1231.
  • Verma IM, Sassone-Corsi P. Proto-oncogene fos: complex but versatile regulation. Cell. 1987;51(4):513–514.
  • Cui Y, Wang Y, Deng J, et al. Chrysotile effects on the expression of anti-oncogene P53 and P16 and oncogene C-jun and C-fos in Wistar rats’ lung tissues. Environ Sci Pollut Res Int. 2018;25(23):22378–22388.
  • Riedel M, Berthelsen MF, Cai H, et al. In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene. 2021;40(13):2437–2447.
  • Chan QK, Lam H-M, Ng C-F, et al. Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) cell-cycle arrest. Cell Death Differ. 2010;17(9):1511–1523.
  • Bakht MK, Oh SW, Youn H, et al. Influence of Androgen Deprivation Therapy on the Uptake of PSMA-Targeted Agents: emerging Opportunities and Challenges. Nucl Med Mol Imaging. 2017;51(3):202–211.
  • Batra JS, Pienta KJ, Pomper MG, et al. Can the interplay between androgen signaling and PSMA expression be leveraged for theranostic applications? Transl Androl Urol. 2019;8(S3):S263–s264.
  • Vaz S, Hadaschik B, Gabriel M, et al. Influence of androgen deprivation therapy on PSMA expression and PSMA-ligand PET imaging of prostate cancer patients. Eur J Nucl Med Mol Imaging. 2020;47(1):9–15.
  • Beketova E, Fang S, Owens JL, et al. Protein Arginine Methyltransferase 5 Promotes pICln-Dependent Androgen Receptor Transcription in Castration-Resistant Prostate Cancer. Cancer Res. 2020;80(22):4904–4917.
  • Phang JM. Proline Metabolism in Cell Regulation and Cancer Biology: recent Advances and Hypotheses. Antioxid Redox Signal. 2019;30(4):635–649.
  • Phang JM. Proline metabolism and cancer. Front Biosci (Landmark Ed). 2012;17(1):1835–1845.
  • Liu W, Le A, Hancock C, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A. 2012;109(23):8983–8988.
  • Wang H, Zhang Q, Wen Q, et al. Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway. Cell Signal. 2012;24(1):17–24.
  • Kansakar U, Wang W, Markovic V, et al. Phosphorylation of the proline-rich domain of WAVE3 drives its oncogenic activity in breast cancer. Sci Rep. 2021;11(1):3868.
  • de Sousa IH, Campos VNS, Vale AAM, et al. Ruthenium (II) complexes with N, O-chelating proline and threonine ligands cause selective cytotoxicity by the induction of genomic instability, cell cycle arrest and apoptosis in breast and prostate tumor cells. Toxicol In Vitro. 2020;62:104679.
  • Funderburk SF, Shatkina L, Mink S, et al. Specific N-terminal mutations in the human androgen receptor induce cytotoxicity. Neurobiol Aging. 2009;30(11):1851–1864.