679
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Inhibitory activity of Halobacillus trueperi S61 and its active extracts on potato dry rot

, &
Pages 3852-3867 | Received 26 Nov 2021, Accepted 27 Dec 2021, Published online: 15 Feb 2022

References

  • Tiwari R, Bashyal B, Shanmugam V, et al. Impact of Fusarium dry rot on physicochemical attributes of potato tubers during postharvest storage. Postharvest Biol Tec. 2021;181:111638.
  • Bahmani K, Hasanzadeh N, Harighi B, et al. Isolation and identification of endophytic bacteria from potato tissues and their effects as biological control agents against bacterial wilt. Physiol Mol Plant P. 2021;116:101692.
  • Khedher S, Mejdoub-Trabelsi B, Tounsi S. Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biol Control. 2021;152:104444.
  • Hajian-Maleki H, Baghaee-Ravari S, Moghaddam M. Herbal essential oils exert a preservative effect against the potato soft rot disease. Sci Hortic. 2021;285:110192.
  • Kolaei E, Tweddell R, Avis T. Antifungal activity of sulfur-containing salts against the development of carrot cavity spot and potato dry rot. Postharvest Biol Tec. 2012;63(1):55–59.
  • Elsherbiny E, Amin B, Baka Z. Efficiency of pomegranate (Punica granatum L.) peels extract as a high potential natural tool towards Fusarium dry rot on potato tubers. Postharvest Biol Tec. 2016;111:256–263.
  • Bojanowski A, Avis T, Pelletier S, et al. Management of potato dry rot. Postharvest Biol Tec. 2013;84:99–109.
  • Chehri K, Ghasempour H, Karimi N. Molecular phylogenetic and pathogenetic characterization of Fusarium solani species complex (FSSC), the cause of dry rot on potato in Iran. 2014;Microbia Pathogenesis. 67-68:14–19.
  • Recep K, Fikrettin S, Erkol D, et al. Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control. 2009;50(2):194–198.
  • Ren J, Tong J, Li P, et al. Chitosan is an effective inhibitor against potato dry rot caused by Fusarium oxysporum. Physiol Mol Plant P. 2021;113:101601.
  • Xue H, Bi Y, Tang Y, et al. Effect of cultivars, Fusarium strains and storage temperature on trichothecenes production in inoculated potato tubers. Food Chem. 2014;151:236–242.
  • Shen F, Wu W, Han X, et al. Study on the occurrence law and green control of grape gray mold from the perspective of ecological balance. Bioengineered. 2021;12(1):779–790.
  • Sleator RD. Under the microscope: from pathogens to probiotics and back. Bioengineered. 2015;6(5):275–282.
  • Zaritsky A, Dov E, Borovsky D, et al. Transgenic organisms expressing genes from Bacillus thuringiensis to combat insect pests. Bioengineered. 2010;1(5):341–344.
  • Selim H, Gomaa N, Essa A. Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: ceratobasidiaceae) damping-off disease in cotton seedlings. Biocontrol Sci Technol. 2017;27(1):81–95.
  • Sana A, Ben S, Ines K, et al. Biological control of the soft rot bacterium Pectobacterium carotovorum by Bacillus amyloliquefaciens strain Ar10 producing glycolipid-like compounds. Microbiol Res. 2018;217:23–33.
  • Mnif I, Hammami I, Triki M, et al. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environ Sci Pollut R Int. 2015;22(22):18137–18147.
  • Tiwari R, Kumar R, Sharma S, et al. Potato dry rot disease: current status, pathogenomics and management. 3 Biotech. 2020;10(11):503.
  • Bayona L, Grajales A, Cárdenas M, et al. Isolation and characterization of two strains of Fusarium oxysporum causing potato dry rot in Solanum tuberosum in Colombia. Rev Iberoam Micol. 2011;28(4):166–172.
  • Schisler D, Slininger P, Olsen N. Appraisal of selected osmoprotectants and carriers for formulating Gram-negative biocontrol agents active against Fusarium dry rot on potatoes in storage. Biol Control. 2016;98:1–10.
  • Heltoft P, Molteberg E, Nærstad R, et al. Effect of maturity level and potato cultivar on development of Fusarium dry rot in Norway. Potato Res. 2015;58(3):205–219.
  • Al-Mughrabi K. Biological control of Fusarium dry rot and other potato tuber diseases using Pseudomonas fluorescens and Enterobacter cloacae. Biol Control. 2010;53(3):280–284.
  • Borgi M, Boudebbouze S, Mkaouar H, et al. Bacillus phytases: current status and future prospects. Bioengineered. 2015;6(4):233–236.
  • Bonanomi G, Lorito M, Vinale F, et al. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol. 2018;56(1):1–20.
  • Yu P, Zhang Y, Gu D. Production optimization of a heat-tolerant alkaline pectinase from Bacillus subtilis ZGL14 and its purification and characterization. Bioengineered. 2017;8(5):613–623. 5.
  • Zhang C, Li Y, Zhang T, et al. Increasing chitosanase production in Bacillus cereus by a novel mutagenesis and screen method. Bioengineered. 2021;12(1):266–277.
  • Boivin M, Bourdeau N, Barnabe S, et al. Black spruce extracts reveal antimicrobial and sprout suppressive potentials to prevent potato (Solanum tuberosum L.) losses during storage. J Agr Food Res. 2021;5:100187.
  • Aftab M, Zafar A, Iqbal I, et al. Optimization of saccharification potential of recombinant xylanase from Bacillus licheniformis. Bioengineered. 2018;9(1):159–165.
  • Ibrahim M, Griko N, Junker M, et al. Bacillus thuringiensis. Bioengineered. 2010;1(1):31–50.
  • O’Mahony M, Henneberger R, Selvin J, et al. Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome. Bioengineered. 2015;6(2):89–98.
  • Wang Y, Shao Y, Zou X, et al. Synergistic action between extracellular products from white-rot fungus and cellulase significantly improves enzymatic hydrolysis. Bioengineered. 2018;9(1):178–185.