10,338
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Active pharmaceutical ingredient (API) chemicals: a critical review of current biotechnological approaches

, , , , , , & ORCID Icon show all
Pages 4309-4327 | Received 24 Nov 2021, Accepted 12 Jan 2022, Published online: 08 Feb 2022

References

  • Ternes TA, and Joss A. Human pharmaceuticals, hormones and fragrances—The challenge of micropollutants in urban water management. London, UK: IWA Publishing; 2006.
  • Kummerer K. Pharmaceuticals in the environment: sources, fate, effects and risks. Berlin, Heidelberg: Springer; 2004.
  • Kumar A, Bisht BS, Joshi VD, et al. Physical, chemical and bacteriological study of water from rivers of Uttarakhand. J Human Ecol. 2010;32(3):169–173.
  • Vijay G. Systemic Failure of Regulation: The Political Economy of Pharmaceutical and Bulk Drug Manufacturing (February 16, 2017). Chapter 4 in: The Politics of the Pharmaceutical Industry and Access to Medicines - World Pharmacy and India. Social Science Press; 2013. https://ssrn.com/abstract=2918943.
  • SWITCH Biodegradability and fate of pharmaceutical impact compounds in different treatment processes. (2014). Katarzyna Kujawa-Roeleveld, els Schuman WU, environmental technology, Wageningen, The Netherlands. Sustainable water management in the city of the future. http://www.switchurbanwater.eu/outputs/pdfs/W41_GEN_RPT_D4.1.3_Biodegradability_and_fate_of_phamarceutical_compounds.pdfAccessed: Retrieved 2016 May 11
  • International, K. P. M. G. (2006). The Indian pharmaceutical industry: collaboration for growth. http://www.in.kpmg.com/pdf/Indian%20pharma%20outlook.pdfAccessed: Retrieved 2014 Jun 10. Google Scholar.
  • DOE, & SSEB. (2006). Biochemicals. Fact sheet Retrieved February 10 2008. http://www.arkansasrenewableenergy.org/fact%20sheets/Biochemicals.pdf
  • Mason M (2009). World’s highest drug pollution levels found in Indian stream. http://usatoday30.usatoday.com/tech/science/environment/2009-01-26-drug-india-stream_n.htmAccessed: Retrieved 2016 May 11
  • Derksen JGM, Rijs GBJ, Jongbloed RH. Diffuse pollution of surface water by pharmaceutical products. Water Sci Technol. 2004;49(3):213–221. PubMed: 15053118.
  • Dalahmeh S, Björnberg E, Elenström AK, et al. Pharmaceutical pollution of water resources in Nakivubo wetlands and Lake Victoria, Kampala, Uganda. SciTotal Environ. 2020 March 25;710: 136347.
  • Dale BE. ‘Greening’ the chemical industry: research and development priorities for biobased industrial products. J Chem Technol Biotechnol. 2003;78(10):1093–1103.
  • Danner H, Braun R. Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev. 1999;28(6):395–405.
  • Frost JW, Draths KM. Biocatalytic Syntheses Of Aromatics From D-GLUCOSE: renewable microbial sources of aromatic compounds. Annu Rev Microbiol. 1995;49(1):557–579.
  • Ohara H. Biorefinery. Appl Microbiol Biotechnol. 2003;62(5–6):474–477.
  • Lichtenthaler FW, Mondel S. Perspectives in the use of low molecular weight carbohydrates as organic raw materials. Pure Appl Chem. 1997;69(9):1853–1866.
  • Wilpiszewska K, Spychaj T. Chemical modification of starch with hexamethylene diisocyanate derivatives. Carbohydr Polym. 2007;70(3):334–340.
  • Ueda S, Zenin CT, Monteiro DA, et al. Production of ethanol from raw cassava starch by a nonconventional fermentation method. Biotechnol Bioeng. 1981;23(2):291–299.
  • Kim BS, Chang HN. Production of poly (3-hydroxybutyrate) from starch by Azotobacter chroococcum. Biotechnol Lett. 1998;20(2):109–112.
  • Wu Z, Lee YY. Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol. Appl Biochem Biotechnol. 1998;70–72(1):479–492.
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83(1):1–11.
  • Wyman CE. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Prog. 2003;19(2):254–262.
  • Lee YH, Robinson CW, Moo-Young M. Evaluation of organosolv processes for the fractionation and modification of corn stover for bioconversion. Biotechnol Bioeng. 1987;29(5):572–581.
  • Li Y, Ruan R, Chen PL, et al. Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Trans ASABE. 2004;47(3):821–825.
  • Vegas R, Alonso JL, Domínguez H, et al. Processing of rice husk autohydrolysis liquors for obtaining food ingredients. J Agric Food Chem. 2004;52(24):7311–7317.
  • Nabarlatz D, Farriol X, Montané D. Autohydrolysis of almond shells for the production of xylo-oligosaccharides:  product characteristics and reaction kinetics. Ind Eng Chem Res. 2005;44(20):7746–7755.
  • Uihlein A, Schebek L. Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenergy. 2009;33(5):793–802.
  • Cherubini F, Ulgiati S. Crop residues as raw materials for biorefinery systems e A LCA case study. Appl Energy. 2010;87(1):47–57.
  • Cherubini F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage. 2010b;51(7):1412–1421.
  • Pettersson K, Harvey S. CO2 emission balances for different black liquor gasification biorefinery concepts for production of electricity or secondgeneration liquid biofuels. Energy. 2010;35(2):1101–1106.
  • Dobbelaere S, Drouillon M, and Soetaert W, 2010. Critical Success Factors for Biorefineries, Conference Proceedings, Innovation for Sustainable Production, Bruges, Belgium. 2010.
  • Ekman A, Börjesson P. Environmental assessment of propionic acid produced in an agricultural biomass-based biorefinery system. J Clean Prod. 2011;19(11):1257–1265.
  • Samel U-R, Kohler W, Gamer AO, et al. Propionic acid and derivatives. Ullmann’s Encycl Indus Chem. 2005. DOI:10.1002/14356007.a22_223
  • Barbirato F, Chedaille D, Bories A. Propionic acid fermentation from glycerol: comparison with conventional substrates. Appl Microbiol Biotechnol. 1997;47(4):441–446.
  • Werpy T, Petersen G, 2004. Top Value Added Chemicals from Biomass Volume I e Results of Screening for Potential Candidates from Sugar and Synthesis Gas. US Department of Energy.
  • Ramos LP. The chemistry involved in the stream treatment of lignocellulosic materials. Química Nova. 2003;26(6):863–871.
  • Kümmerer K. The presence of pharmaceuticals in the environment due to human use−present knowledge and future challenges. J Environ Manage. 2009;90(8):2354–2366.
  • Li WC. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut. 2014;187:193–201.
  • Lapworth DJ, Baran N, Stuart ME, et al. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut. 2012;163:287–303.
  • Wilkinson J, Hooda PS, Barker J, et al. Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field. Environ Pollut. 2017;231(1):954–970.
  • Bottoni P, Caroli S. Presence of residues and metabolites of pharmaceuticals in environmental compartments, food commodities and workplaces: a review spanning the three-year period 2014−2016. Microchem J. 2018;136:2–24.
  • Carpenter CMG, Helbling DE. Widespread micropollutant monitoring in the Hudson River estuary reveals spatiotemporal micropollutant clusters and their sources. Environ Sci Technol. 2018;52(11):6187–6196.
  • Cue BW, Zhang J. Green process chemistry in the pharmaceutical industry. Green Chem Lett Rev. 2009;2(4):193–211.
  • Shewale JG, Sivaraman H. Penicillin acylase: enzyme production and its application in the manufacture of 6-APA. Process Biochem. 1989;24:146–154.
  • Fiorentino G, Ripa M, Ulgiati S. Chemicals from biomass: technological versus environmental feasibility. A review. Biofuel Bioprod Biorefin. 2017;11(1):195–214.
  • Sudhakaran VK, Borkar PS. Phenoxymethyl penicillin acylase: sources and study—A sum up. Hindustan Antibiot Bull. 1985b;27(1–4):44–62.
  • Demain AL. Small bugs, big business: the economic power of the microbe. Biotechnol Adv. 2000;18(6):499–514.
  • Vroom De E (1997). An improved immobilized penicillin G acylase. WO Patent WO. PubMed: 1997004086, A1.
  • Bianchi D, Bartolo R, Olini P, et al. Application of immobilised enzymes in the manufacture of beta-lactam antibiotics. Chim E l’Industria Milan. 1998;80(38):879–885.
  • Vroom De E (2000). Penicillin G acylase immobilized with a crosslinked mixture of gelled gelatin and amino polymer. U.S. Patent 6060268.
  • Parmar A, Kumar H, Marwaha SS, et al. (2000)Advances in enzymatic transformation of penicillins to 6-aminopenicillanic acid (6-APA). Biotechnol Adv. 2000;18(4):289–301.
  • Wedekind F, Daser A, Tischer W (1998). Immobilization of penicillin G amidase, glutaryl 7-ACA acylase or D-amino-acid oxidase on an amino functional organosiloxane polymer carrier. U.S. Patent 5780260, 39.
  • Wang BJ, Chen J, and Zhang H, et al. Magnetic mesoporous microspheres modified with hyperbranched amine for the immobilization of penicillin G acylase. 41Zhang. Biochem Eng J. 2017;127:43–52.
  • Isikgor FH, Becer CRA, and C. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem. 2015;6(25):4497–4559.
  • Yussof NS, Utra U, Alias AK. Hydrolysis of native and cross-linked corn, tapioca, and sweet potato starches at sub-gelatinization temperature using a mixture of amylolytic enzymes. Starch - Stärke. 2013;65(3–4):285–295.
  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy. 2004;26(4):361–375.
  • Bongaerts J, Krämer M, Müller U, et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng. 2001;3(4):289–300.
  • Kim CU, Lew W, Williams MA, et al. Structure–activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem. 1998;41(14):2451–2460.
  • Zha W, Shao Z, Frost JW, et al. Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from D-glucose in vivo. J Am Chem Soc. 2004;126(14):4534–4535.
  • Anastas PT, Kirchhoff MM. Origins, current status, and future challenges of green chemistry. Acc Chem Res. 2002;35(9):686–694.
  • Huang H, Yang ST (2005). Fumaric acid production from glucose and cornstarch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Presented at AIChE Annual Meeting. Cincinnati. Oct 30-Nov 4.
  • Hames B, Sluiter AD, Hayward TK, et al., inventors. Process for the conversion of aqueous biomass hydrolyzate into fuel and chemicals by the selective removal of fermentation inhibitors. U.S. Patent US6737258B2. (2004 May).
  • Koutinas AA, Wang R-H, Webb C. The biochemurgist—Bioconversion of agricultural raw materials for chemical production. Biofuel Bioprod Biorefin. 2007;1(1):24–38.
  • Zeikus JG, Jain MK, Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol. 1999;51(5):545–552.
  • Werpy and Peterson (2004), “Top value added chemicals from biomass: volume 1 results of screening for potential candidates from sugars and synthesis gas,” National Renewable Energy Laboratory, Department of Energy.
  • Tullo, Tullo A. Chemicals from Renewables. Chem Eng News. 2007a;85(19):14.
  • Cheng Y, Dong C, Huang C, et al. Enhanced production of diosgenin from Dioscorea zingiberensis in mixed culture solid state fermentation with Trichoderma reesei and Aspergillus fumigatus. Biotechnol Biotechnol Equip. 2015;29(4):773–778.
  • Hirono-Hara Y, Mizutani Y, Murofushi K, et al. Glutathione fermentation by Millerozyma farinosa using spent coffee grounds extract and seawater. Bioresour Technol Rep. 2021;15(September 2021):100777.
  • Naim W, Schade OR, Saraçi E, et al. Toward an Intensified Process of Biomass-Derived Monomers: the Influence of 5-(Hydroxymethyl)furfural byproducts on the gold-catalyzed synthesis of 2,5-furandicarboxylic acid. ACS Sustain Chem Eng. 2020;8(31):11512–11521.
  • Zhou X, Zhou X, Liu G, et al. Integrated production of gluconic acid and xylonic acid using dilute acid pretreated corn stover by two-stage fermentation. Biochem Eng J. 2018;137:18–22. 2018 Sept 15.
  • Tang B, Lei P, Zongqi X, et al. Highly efficient rice straw utilization for poly-(γ-glutamic acid) production by Bacillus subtilis NX-2. Bioresour Technol. 2015;193:370–376.
  • Hevekerl A, Kuenz A, Vorlop K-D. Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol. 2014;98(2014):10005–10012.
  • Nonaka D, Fujiwara R, Hirata Y, et al. Metabolic engineering of 1,2-propanediol production from cellobiose using beta-glucosidase-expressing E. coli. Bioresour Technol. 2021;329:124858.
  • Cortivo, Cortivo PRD, Machado J, et al. Production of 2,3-butanediol by Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1 cultivated in acid and enzymatic hydrolysates of soybean hull. Biotechnol Prog. 2019;35(3):1–8.
  • Vickers C, Possell M, Hewitt N, et al. Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.) Plant Mol. Biol. 2010;73:547–558.
  • Karnaouri A, Asimakopoulou G, Konstantinos GK, et al. Efficient production of nutraceuticals and lactic acid from lignocellulosic biomass by combining organosolv fractionation with enzymatic/fermentative routes. Bioresour Technol. 2021;341:125846.
  • Huccetogullari D, Luo ZW, Lee SY, et al. Microbial production of aromatic amino acids and derived compounds. Metab Eng. 2019;3:289–300.
  • Kim CU, Lew W, Williams MA, et al. Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Am Chem Soc. 1998;41:2451–2460.
  • Kramer M, Bongaerts J, Bovenberg R, et al. Metabolic engineering for microbial production of shikimic acid. Metab Eng. 2003;5(4):277–283.
  • Tanimura K, Nakayama H, Tanaka T, et al. Ectoine production from lignocellulosic biomass-derived sugars by engineered Halomonas elongata. Bioresour Technol. 2013;142:523–529.
  • Jarmander J, Belotserkovsky J, Sjöberg G, et al. Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli. Microb Cell Fact. 2015;14(1):51.
  • Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci. 2012;69(16):2671–2690.
  • Nielsen J. Metabolic engineering. Appl Microbiol Biotechnol. 2001;55(3):263–283.
  • Nielsen J, Keasling JD. Synergies between synthetic biology and metabolic engineering. Nat Biotechnol. 2011;29(8):693–695.
  • Tyo KE, Alper HS, Stephanopoulos GN. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol. 2007;25(3):132–137.
  • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2008;72(3):379–412.
  • Snyder M, Gallagher JE. Systems biology from a yeast omics perspective. FEBS Lett. 2009;583(24):3895–3899.
  • Sanches Henao CP, Gomez Grimaldos NA, Quintero Diaz JC. Producción de acido clavulánico por fermentación de streptomyces clavuligerus: evaluación de diferentes medios de cultivo y modelado matemático. Dyna. 2012;79:158–165.
  • Bellão C, Antonio T, Araujo MLGC, et al. Production of clavulanic acid and cephamycin c by streptomyces clavuligerus under different fed-batch conditions. Braz J Chem Eng. 2013;30(2):257–266. CrossRef.
  • de Jong B, Siewers V, Nielsen J. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol. 2012;23(4):624–630.
  • Kim IK, Roldao A, Siewers V, et al. systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res. 2012;12(2):228–248.
  • Kirby J, Keasling JD. Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep. 2008;25(4):656–661.
  • Maury J, Asadollahi MA, Moller K, et al. Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol. 2005;100:19–51.
  • Rohloff, Kent, K, Postich, M, et al. Practical total synthesis of the anti-influenza drug GS-4104. J Org Chem. 1998;63(13):4545–4550.
  • Chandran SS, Yi J, Draths KM, et al. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog. 2003;19(3):808–814.
  • Knop DR, Draths KM, Chandran, et al. Hydroaromatic equilibrium during biosynthesis of shikimic acid. J Am Chem Soc. 2001;123(42):10173–10182.
  • Iomantas Y, Abalakina EG, Polanuer B, et al. Method for producing shikimic acid. US Pat. 2002;6:436,664.
  • Pittard. Biosynthesis of aromatic amino acids. In: Neidhardt FC, R C III, Ingraham JL, et al, editors. Escherichia coli and Salmonella, cellular and molecular Bbiology. WashingtonSSSS DC: American Society of Microbiology; 1996. p. 458–484.
  • Rawat G, Tripathi P, Saxena RK, et al. Expanding horizons of shikimic acid. Appl Microbiol Biotechnol. 2013;97(10):4277–4287.
  • Draths KM, Knop, Frost, et al. Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc. 1999;121(7):1603–1604.
  • Kumar V, Sharma DK, Sandhu PP, et al. Sustainable process for the production of cellulose by an Acetobacter pasteurianus RSV-4 (MTCC 25117) on whey medium. Cellulose. 2020;28(1):103–116.
  • Isar, Isar J, Agarwal L, et al. Succinic acid production from Bacteroides fragilis: process optimization and scale up in a bioreactor. Anaerobe. 2006;12(5–6):231–237.
  • Bechthold I, Bretz K, Kabasci S, et al. Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol. 2008;31(5):647–654.
  • Honda, Honda N, Taniguchi I, et al. Reaction mechanism of enzymatic degradation of poly(butylene succinate-co-terephthalate) (PBST) with a lipase originated from Pseudomonas cepacia. Macromol Biosci. 2003;3(34):189–197.
  • Ribeiro Borges E, Pereira N Jr. Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. J Ind Microbiol Biotechnol. 2011 Aug 1;38(8):1001–1011.
  • Calabia BP, Ninomiya F, Yagi H, et al. Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers. 2013;5(1):128–141.
  • Song H, Lee SY. Production of Succinic Acid by Bacterial Fermentation. Enzyme Microb Technol. 2006;39(3):352–361.
  • Gallmetzer M, Meraner, J, Burgstaller, W, et al. Succinate synthesis and excretion by Penicillium simplicissimum under aerobic and anaerobic conditions. FEMS Microbiol Lett. 2002;210(2):221–225.
  • Liu, Liu Y-P, Zheng P, et al. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Biores Technol. 2008;99(6):1736–1742.
  • Du, Du C, Lin SKC, et al. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Biores Technol. 2008;99(17):8310–8315.
  • Rice T, Zannini E, Arendt EK, et al. A review of polyols – biotechnological production, food applications, regulation, labeling and health effects. Crit Rev Food Sci Nutr. 2020;60(12):2034–2051.
  • Rzechonek DA, Dobrowolski, Dobrowolski A, et al. Recent advances in biological production of erythritol. Crit Rev Biotechnol. 2018;38(4):620–633.
  • Philippe RN, de Mey M, Anderson J, et al. Biotechnological production of natural zero-calorie sweeteners. Curr Opin Biotechnol. 2014;26:155–161.
  • Hootman KC, Trezzi JP, Kraemer L, et al. Erythritol is a pentose-phosphate pathway metabolite and associated with adiposity gain in young adults. Proc Natl Acad Sci USA. 2017;114(21):E4233–e4240.
  • Young T 1, Li Y 2, Efthimiou G. Olive pomace oil can be used as an alternative carbon source for clavulanic acid production by streptomyces clavuligerus. Waste Biomass Valorization. 2020;11(8):3965–3970.
  • Efthimiou G, Thumser A, Avignone Rossa C. A novel finding that Streptomyces clavuligerus can produce the antibiotic clavulanic acid using olive oil as a sole carbon source. J Appl Microbiol. 2009;105:2058–2064.
  • Mayer AF, Deckwer WD. Simultaneous production and de- composition of clavulanic acid during Streptomyces clavuligerus cultivations. Appl Microbiol Biot. 1996;45(1–2):41–46.
  • Wang and Chen. Clavulanic acid production by streptomyces clavuligerus using solid state fermentation on polyurethane foam. Tr Ren Energy. 2016;2(1):2–12.
  • Cruz-Hernández IL, Vasconcelos EDS, Teodoro JC, et al. Exploring the optimization of UV mutants of streptomyces clavuligerus for clavulanic acid production. Microbiol Res J Int. 2018;26(6):1–8.
  • Saudagar PS, Singhal RS, Saudagar and Singhal. A statistical approach using L25 orthogonal array method to study fermentative production of clavulanic acid by Streptomyces clavuligerus MTCC 1142. Appl Biochem Biotech. 2007a;136(3):345–359.
  • Gómez-Ríos D, Junne S, Neubauer P, et al. Characterization of the metabolic response of streptomyces clavuligerus to shear stress in stirred tanks and single-use 2d rocking motion bioreactors for clavulanic acid production. Antibiotics. 2019;8(4):168.
  • Von Nussbaum F, Brands M, Hinzen B, et al. Antibacterial natural products in medicinal chemistry–exodus or revival? Angew Chem Int Ed. 2006b;45:5072–5129.
  • Gröger H, Pieper M, König B, et al. Industrial landmarks in the development of sustainable production processes for the β-lactam antibiotic key intermediate 7-aminocephalosporanic acid (7-ACA). Sustainable Chem Pharm. 2017;5:72–79.
  • Ronald CLI, Prem K, Narang JS, et al. Rifabutin absorption in the gut unaltered by concomitant administration of didenosine in AIDS patients. Antimicrob Agents Chemother. 1997;41(7):1566–1570.
  • Rana. Rifampicin – an overview. Int J Res Pharm Chem. 2013;3:83–87.
  • Mandali N, Ponamgi P, Girijashankar V, et al. Solid State Fermentation and production of Rifamycin SV using Amycolatopsis mediterranei. Lett Appl Microbiol. 2014;60. 10.1111/lam.12332
  • Silverman R, Silverman. From basic science to blockbuster drug: the discovery of lyrica. Angew Chem Int Ed. 2008;47(19):3500–3504.
  • Chen Y, Li X, Cheng R, et al. Recent development in the synthesis of pregabalin. Chin J Org Chem. 2011;31:1582–1594.
  • Hoge G, P WH, Kissel WS, et al. Highly selective asymmetric hydrogenation using a three hindered quadrant bisphosphine rhodium catalyst. J Am Chem Soc. 2004;126(19):5966–5967.
  • Xie Z, Feng J, Garcia E, et al. Cloning and optimization of a nitrilase for the synthesis of (3S)-3-cyano-5-methyl hexanoic acidJ. Mol Catal B: Enzym. 2006;41(3–4):75–80.
  • Zheng R-C, Zhenga Y-G, Li A-P, et al. Enantioselective synthesis of (S)-3-cyano-5-methylhexanoic acid by a high DMSO concentration tolerable Arthrobacter sp. ZJB-09277. Biochem Eng J. 2014;83:97–103.
  • Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotech. 2002;28(1):56–63.
  • Ma H, Zhao Y-Q, Huang W-Z, et al. Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nat Commun. 2020;11(1):12.
  • Sauer T, Galinski EA. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng. 1998;57(3):306–313.
  • Brechbill SC, Tyner WE, Ileleji KE. The Economics of Biomass Collection and Transportation and Its Supply to Indiana Cellulosic and Electric Utility Facilities. Brechbill SC, Wallace ET, Klein EI.BioEnergy Research.4:2011; 2:141–152
  • Ramírez-Gómez Á. Research needs on biomass characterization to prevent handling problems and hazards in industry. Part Sci Technol. 2016;34(4):432–441.
  • Von Blottnitz H, Curran MA. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J Clean Prod. 2007;15(7):607–619.
  • Van der Stelt MJC, Gerhauser H, Kiel JHA, et al. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 2011;35:3748–3762.
  • Prins MJ, Ptasinski KJ, Janssen FJJG. Torrefaction of wood: part 1. Weight Loss Kinetics. J Anal Appl Pyrolysis. 2006a;77(1):28–34. Prins, M. J., K. J. Ptasinski.
  • Balevičius R, Kačianauskas R, Mroz Z, et al. Discrete-particle investigation of friction effect in filling and unsteady/ steady discharge in three-dimensional wedge-shaped hopper. Powder Technol. 2008;187(2):159–174.
  • Elliston A, Wood IP, Soucouri MJ, et al. Methodology for enabling high-throughput simultaneous saccharification and fermentation screening of yeast using solid biomass as a substrate. Biotechnol Biofuels. 2015;8(1):2.
  • Sykes RW, Gjersing EL, Doeppke CL, et al. Highthroughput method for determining the sugar content in biomass with pyrolysis molecular beam mass spectrometry. Bioenergy Res. 2015a;8(3):964–972.
  • Da Silva Neto HG, Da Silva JB, Pereira GE, et al. Determination of metabolite profiles in tropical wines by 1H NMR spectroscopy and chemometrics.Magn. Reson Chem. 2009;47(Suppl. 1):S127–S129.
  • D G-DÁ, Peralta-Ruíz Y, Pardo Y, et al. Energy integration of bioethanol production process topology from microalgae biomass: evaluation of SSCF, SSF, acid hydrolysis and product purification alternatives. Chem Eng Trans. 2013;35:1069–1074.
  • Santos DT, Ensinas AV, Chandel AK, et al. Recent trends in integrated biorefineries development for sustainable production. Int J Chem Eng. 2014. DOI:10.1155/2014/258057
  • Yılmaz S, Selim H. A review on the methods for biomass to energy conversion systems design. Renew Sust Energ Rev. 2013;25:420–430.
  • Nizami A-S, Ismail IM. Life-cycle assessment of biomethane from lignocellulosic biomass. In: Singh A, Pant D, I OS editors. Life cycle assessment of renewable energy sources, green energy and technology. London UK: Springer; 2013. (Green Energy and Technology). 79–94.
  • Espro C, Paone E, Mauriello F, et al. Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chem Soc Rev. 2021;50(20):11191–11207.
  • Ko YS, Kim JW, Lee JA, et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev. 2020;49(14):4615–4636.
  • Saha A, Basak BB. Scope of value addition and utilization of residual biomass from medicinal and aromatic plants. Ind Crops Prod. 2020;145:111979.