3,791
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

Plant microbe based remediation approaches in dye removal: A review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , , , , & show all
Pages 7798-7828 | Received 20 Dec 2021, Accepted 01 Mar 2022, Published online: 16 Mar 2022

References

  • Zubair M, Ihsanullah I, Jarrah N, et al. Starch-NiFe-layered double hydroxide composites: efficient removal of methyl Orange from aqueous phase. J Mol Liq. 2018;249. DOI:10.1016/j.molliq.2017.11.022
  • Cheah YT, Chan DJC, Yi Tong C, et al. Physiology of microalgal biofilm: a review on prediction of adhesion on substrates. Bioengineered. 2021;12(1):7577–7599. DOI:10.1080/21655979.2021.1980671.
  • Ahlawat W, Kataria N, Dilbaghi N, et al. Carbonaceous nanomaterials as effective and efficient platforms for removal of dyes from aqueous systems. Environ Res. 2020;181:108904.
  • Chong MY, Tam YJ. Bioremediation of dyes using coconut parts via adsorption: a review. SN Appl Sci. 2020;2:187.
  • Ting-Yang LW, Chai S, Shu-Jen CJ-Y, et al. Liu Yu-Kaung Chang. removal of soluble microbial products and dyes using heavy metal wastes decorated on eggshell. Chemosphere. 2021;270:128615. 101016/jchemosphere2020128615
  • Rauf MA, Salman Ashraf S. Survey of recent trends in biochemically assisted degradation of dyes. Chem Eng J. 2021;209:520–530.
  • Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ Int. 2004;30:953–971.
  • Devda V, Chaudhary K, Varjani S, et al. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered. 2021;12(1):4697–4718.
  • Khalid A, Zubair M, Ihsanullah I. A comparative study on the adsorption of eriochrome black T Dye from aqueous solution on graphene and acid-modified graphene. Arab J Sci Eng. 2018;43:2167–2179.
  • Ahlawat W, Kataria N, Dilbaghi N, et al. Carbonaceous nanomaterials as effective and efficient platforms for removal of dyes from aqueous systems. Environ Res. 2020;181:108904.
  • Chong MY, Tam YJ. Bioremediation of dyes using coconut parts via adsorption: a review. SN Appl Sci. 2020;2(2):187.
  • Khataee AR, Dehghan G, Ebadi A, et al. Biological treatment of a dye solution by MacroalgaeChara sp.: effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour Technol. 2010;101(7):2252–2258.
  • Kabra A, Khandare R, Govindwar S. Development of a low-cost, phyto-tunnel system using Portulaca grandiflora and its application for the treatment of dye-containing wastewaters. Water Res. 2013;471035–471048.
  • Fazal T, Mushtaq A, Rehman F, et al. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable Sustainable Energy Rev. 2018;82:3107–3126.
  • Yaseen DA, Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol (Tehran). 2019;16(2):1193–1226.
  • Yogalakshmi KN, Das A, Rani G, et al. Nano-bioremediation: a new age technology for the treatment of dyes in textile effluents. In: Saxena G, Bharagava RN, editors. Bioremediation Ind. Waste Environ. Saf. Springer. 313–347. 10.1007/9789811318917_15. 10.1007/9789811318917_15
  • Khandare RV, Kabra AN, Awate AV, et al. Synergistic degradation of diazo dye direct red 5B by portulaca grandiflora and pseudomonas putida. Int J Environ Sci Technol. 2013;10(5):1039–1050.
  • Ahlawat W, Kataria N, Dilbaghi N, et al. Carbonaceous nanomaterials as effective and efficient platforms for removal of dyes from aqueous systems. Environ Res. 2020;181:108904.
  • Siong W, Jie Ying C, Cheun P, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod. 2021;296:126589. 101016/jjclepro2021126589.
  • Kumar Gaur V, Sharma P, Gaur P, et al. Sustainable mitigation of heavy metals from effluents: toxicity and fate with recent technological advancements. Bioengineered. 2021;12(1):7297–7313.
  • Palanisamy S, Nachimuthu P, Awasthi MK, et al. Application of electrochemical treatment for the removal of triazine dye using aluminium electrodes. J Water Supply. 2020;69(4):345–354 102166/aqua2020109.
  • Khandare RV, Kabra AN, Awate AV. Govindwar SP synergistic degradation of diazo dye direct red 5B by Portulaca grandiflora and Pseudomonas putida. Int J Environ Sci Technol. 2013;10(5):1039–1050.
  • Reshmy R, Philip E, Thomas D, et al. Bacterial nanocellulose: engineering, production, and applications. Bioengineered. 2021;12(2):11463–11483.
  • Rajendran S, Priya TAK, Shiong Khoo K, et al. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere. 2022;2874:132369. 101016/jchemosphere2021132369
  • Yaashikaa PR, Senthil Kumar P, Varjani S, et al. Rhizoremediation of Cu(II) ions from contaminated soil using plant growth promoting bacteria: an outlook on pyrolysis conditions on plant residues for methylene Orange dye biosorption. Bioengineered. 2020;11(1):175–187.
  • Yagub MT, Sen TK, Afroze S, et al. Dye and its removal from aqueous solution by adsorption. A Review Adv Colloid Interface Sci. 2014;209:172–184 101016/jcis201404002.
  • Ali H. Biodegradation of synthetic dyes-a review. Water Soil Pollut. 2010;213:251–273.
  • Jadhav JP, Phugar SS, Dhanve RS, et al. Rapid biodegradation and decolorization of Direct Orange 39 (Orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH. Biodegrdation. 2010;21(3):453–463.
  • Fazal T, Mushtaq A, Rehman F, et al. Bioremediation of textile wastewater and successive biodiesel production using microalgae renewable Sustainable. Energy Rev. 2018;82:3107–3126. 101016/jrser201710029.
  • Yogalakshmi KN, Das A, Rani G, et al. Nano-bioremediation: a new age technology for the treatment of dyes in textile effluents. In: Saxena G, Bharagava RN, editors. Bioremediation Ind waste environ saf springer. 2020. 313–347. 101007/9789811318917_15. 101007/9789811318917_15
  • Lellis B, Fávaro-Polonio CZ, Pamphile JA, et al. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov. 2019;3:275–290 101016/jbiori201909001.
  • Padhiyar H, Thanki A, Kumar Singh N, et al. Parametric and kinetic investigations on segregated and mixed textile effluent streams using moringa oleifera seed powders of different sizes. J Water Process Eng. 2020;34:101159. 101016/jjwpe2020101159.
  • Sudha M, Saranya A, Selvakumar G, et al. Microbial degradation of Azo Dyes: a review Int. J Curr Microbiol App Sci . 2014;3(2):670–690.
  • Benkhaya S, M’rabet S, Harfi E. A Classifications properties recent synthesis and applications of azo dyes. Heliyon. 2020;6(1):03271.
  • Sponza DT. Toxicity studies in a chemical dye production industry in Turkey. J Hazard Mater. 2006;138(3):438–447.
  • Abe FR, Machado AL, Soares AMVM, et al. Life history and behavior effects of synthetic and natural dyes on Daphnia magna. Chemosphere. 2019;236:124390.
  • Guo Y, Xue Q, Cui K, et al. Study on the degradation mechanism and pathway of benzene dye intermediate 4-methoxy-2- nitroaniline via multiple methods in Fenton oxidation process. RSC Adv. 2018;8:10764–10775.
  • Gürses A. Classification of dye and pigments in Dyes Pigments. Springer. 2016;31–45.
  • Nigam P, Armour G, Banat IM, et al. Physical removal of textile dyes and solid state fermentation of dye adsorbed agricultural residues. Bio Resource Technol. 2000;72:219–226.
  • Vikrant K, Giri BS, Raza N, et al. Recent advancements in bioremediation of dye: current status and challenges. Bioresour Technol. 2018;253:355–367. 101016/jbiortech201801029.
  • Giovanella P, Vieira GAL, Ramos Otero IV, et al. Metal and organic pollutants bioremediation by extremophile microorganisms. J Hazard Mater. 2020;382:121024. 101016/jjhazmat2019121024.
  • Jadhav SA, Garud HB, Patil PH, et al. Recent advancements in silica nanoparticles-based technologies for removal of dyes from water. Colloid Interface Sci Commun. 2019;30:100181. 101016/jcolcom2019100181.
  • Sarker M, Shin S, Jeong JH, et al. Mesoporous metal-organic framework PCN-222(Fe): promising adsorbent for removal of big anionic and cationic dyes from water. Chem Eng J. 2019;371:252–259. 101016/jcej201904039.
  • Khalid A, Zubair M, Ihsanullah I. A comparative study on the adsorption of eriochrome black T Dye from aqueous solution on graphene and acid-modified grapheme. Arab J Sci Eng. 2018;43:2167–2179. 101007/s13369-017-2543-x.
  • Anliker R. Ecotoxicology of dyestuffs a joint effort by industry. Ecotoxicol Environ Safe. 2017;3:59–74.
  • Ismail M, Khan MI, Khan SB, et al. Catalytic reduction of picric acid nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq. 2018;268:87–101.
  • Abdulla NK, Siddiqui SI, Tara N, et al. Psidium guajava leave-based magnetic nanocomposite γ-Fe2O3@ GL: a green technology for methylene blue removal from water. J Environ Chem Eng. 2019;7:103423.
  • Fatima B, Siddiqui SI, Ahmed R, et al. Green synthesis of f-CdWO4 for photocatalytic degradation and adsorptive removal of Bismarck Brown R dye from water. Water Resour Ind. 2019a;22:100119.
  • Fatima B, Siddiqui SI, Ahmed R, et al. Preparation of functionalized CuO nanoparticles using Brassica rapa leave extract for water purification. Desalination Water Treat. 2019b;164:192–205.
  • Lellis B, Fávaro-Polonio CZ, Pamphile JA, et al. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov. 2019;3:275–290 101016/jbiori201909001.
  • Ismail M, Khan MI, Khan MA, et al. Plant-supported silver nanoparticles: efficient economically viable and easily recoverable catalyst for the reduction of organic pollutants. Appl Organomet Chem. 2019;4971.
  • Ismail M, Khan MI, Khan SB, et al. Catalytic reduction of picric acid nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq. 2018;268:87–101.
  • Siddiqui SI. Chaudhry SA Nigella sativa plant based nanocomposite-MnFe2O4/ BC: an antibacterial material for water purification. J Cleaner Prod. 2018;200:996–1008.
  • Siddiqui SI, Manzoor O, Mohsin M, et al. Nigella sativa seed based nanocomposite-MnO2/BC: an antibacterial material for photocatalytic degradation and adsorptive removal of Methylene blue from water. Environ Res. 2019;171:328–340.
  • Ismail M, Khan MI, Khan SB, et al. Catalytic reduction of picric acid nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq. 2018;268:87–101.
  • Ismail M, Khan MI, Khan MA, et al. Plant-supported silver nanoparticles: efficient economically viable and easily recoverable catalyst for the reduction of organic pollutants. Appl Organomet Chem. 2019;4971.
  • Mu’azu ND, Jarrah N, Kazeem TS, et al. Bentonite-layered double hydroxide composite for enhanced aqueous adsorption of Eriochrome Black T. Appl Clay Sci. 2018;161:23–34 101016/jclay201804009.
  • Singh NB, Nagpal G, Agrawal S, et al. Water purification by using adsorbents: a review. Environ Technol Innov. 2018;11:187–240 101016/jeti201805006.
  • Gupta VK, Mittal A, Krishnan L, et al. Adsorption treatment and recovery of the hazardous dye brilliant blue FCF over bottom ash and de-oiled soya. Colloid Interface Sci. 2006;293:16.
  • Han R, Wang Y, Zou W, et al. Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column. J Hazard Mater. 2007;145:331.
  • Chu JH, Kang JK, Park SJ, et al. Application of magnetic biochar derived from food waste in heterogeneous sono-Fenton-like process for removal of organic dyes from aqueous solution. J Water Process Eng. 2020;37:101455. 101016/jjwpe2020101455.
  • Piscitelli A, Pezzella C, Giardina P, et al. Heterologous laccase production and its role in industrial applications. Bioengineered Bugs. 2010;1(4):254–264.
  • Mohan D, Kunwar P, Singh GS, et al. Removal of dyes from wastewater using flyash a low-cost adsorbent. Ind Eng Chem Res. 2002;41:3688–3698.
  • Khraisheh MA, Alg-Houti MS. Enhanced dye adsorption by micro emulsion modified calcined diatomite (E-CD). Adsorption. 2005;11:547–549.
  • Wang S, Li H. Kinetic modelling and mechanism of dye adsorption on unburned carbon. Dyes Pigment. 2007;72:308–314.
  • Bakaullah SB, Rauf MA, Al-Ali SS. Removal of methylene blue from aqueous solution by adsorption on sand. Dyes Pigment. 2007;74:85–87.
  • Chakraborty S, Chowdhury S, Saha PD. Adsorption of crystal violet from aqueous solution onto sugarcane bagasse: central composite design for optimization of process variables. J Water Reuse Desalin. 2012;2:55–65.
  • Sana S, Haq Nawaz B, Sana N, et al. Application of a novel lignocellulosic biomaterial for the removal of Direct Yellow 50 dye from aqueous solution: batch and column study.J of the Taiwan. Ins Chem Eng. 2015;47:160–170.
  • Lehocky M, Mracek A. Improvement of dye adsorption on synthetic polyester fibers by low temperature plasma pre-treatment. Czech J Physics. 2006;56:1277–1282.
  • Tahir N, Bhatti HN, Iqbal M, et al. Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. Int J Biol Macromol. 2017;94:210–220.
  • Messaoudi NE, Khomri ME, Bentahar S, et al. Evaluation of performance of chemically treated date stones: application for the removal of cationic dyes from aqueous solutions. J Taiwan Inst Chem Eng. 2016;244–253.
  • Shakoor S, Nasar A. Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. J Taiwan Inst Chem Eng. 2016;66:154–163.
  • Setiabudi HD, Jusoh R, Suhaimi SFRM, et al. Adsorption of methylene blue onto oil palm (Elaeis guineensis) leaves: process optimization isotherm kinetics and thermodynamic studies. J Taiwan Inst Chem Eng. 2016;63:363–370.
  • Li Y, Wu M, Wang B, et al. Synthesis of magnetic lignin-based hollow microspheres: a highly adsorptive and reusable adsorbent derived from renewable resources. ACS Sustain Chem Eng. 2016;4(10):5523–5532.
  • Ekambaram SP, Perumal SS, Annamalai U. Decolorization and biodegradation of remazol reactive dyes by Clostridium species. Biotechology. 2016;6:20.
  • Ali H. Biodegradation of synthetic dyes-a review. Water Soil Pollut. 2010;213:251–273.
  • Babu SS, Mohandass C, Vijayaraj AS, et al. Detoxification and color removal of Congo Red by a novel Dietzia sp (DTS26) a microcosm approach. Ecotoxicol Environ Safety. 2015;114:52–60.
  • Jayapal M, Jagadeesan H, Shanmugam M, et al. Sequential anaerobic-aerobic treatment using plant microbe integrated system for degradation of azo dyes and their aromatic amines by-products. J Hazard Mater. 2018;354:231–243.
  • Zuo N, Jinchao H, Xiqin M, et al. Phosphorus removal performance and population structure of phosphorus-accumulating organisms in HA-A/A-MCO sludge reduction process. Bioengineered. 2016;7(5):327–333.
  • Chequer FMD, Dorta DJ, de Oliveira. Azo dyes and their metabolites: does the discharge of the azo dye into water bodies represent human and ecological risks? Advances in Treating Textile Effluent InTech. 2011;27–49. doi:10.5772/19872.
  • Brüschweiler BJ, Merlot C. Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul Toxicol Pharmacol. 2017;88:214–226. 101016/jyrtph201706012.
  • Lewinsky AA. Hazardous materials and wastewater: treatment removal and analysis. New York: Nova Science Publishers; 2007.
  • Lin SH, Lo CC. Fenton process for treatment of desizing wastewater. Water Res. 1997;31:2050–2056.
  • Muda K, Aris A, Salim MR, et al. Sequential anaerobic-aerobic phase strategy using microbial granular sludge for textile wastewater treatment in biomass now-sustainable growth and use. InTech. 2013;231–264. https://doi.org/10.5772/54458.
  • Pilon-Smits E. Phytoremediation. Annu Rev Plant Biol . 2005;56:15–39.
  • Ali H. Biodegradation of synthetic dyes-a review Water. Soil Pollution. 2010;213:251–273.
  • Chandanshive VV, Kadam SK, Khandare RV, et al. In situ phytoremediation of dyes from textile wastewater using garden ornamental plants effect on soil quality and plant growth. Chemosphere. 2018;210:968–976.
  • Chacko JT, Kalidass S. Enzymatic degradation of azo dyes- a review. Int J Environ Sci. 2011;1:1250–1260.
  • Ali I, Burakova I, Galunin E, et al. High-speed and high-capacity removal of methyl Orange and malachite green in water using newly developed mesoporous carbon: kinetic and isotherm studies. ACS Omega. 2019;4:19293–19306. 101021/acsomega9b02669.
  • Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud. 2006;15:523–530.
  • Khataee AR, Dehghan G, Ebadi A, et al. Biological treatment of a dye solution by MacroalgaeChara sp: effect of operational parameters intermediates identification and artificial neural network modeling. Bioresour Technol. 2010;101:2252–2258.
  • Kabra A, Khandare R, Govindwar S. Development of a low-cost phyto-tunnel system using Portulaca grandiflora and its application for the treatment of dye-containing wastewaters. Water Res. 2013;36:471035–471048. doi:10.1007/s10529-013-1324-1.
  • Khataee AR, Dehghan G, Ebadi A, et al. Biological treatment of a dye solution by Macroalgae Chara sp: effect of operational parameters intermediates identification and artificial neural network modeling. BioresourTechnol. 2010;101:2252–2258.
  • Whiting SN, De Souza MP. Terry N Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol. 2001;35:3144–3150.
  • Kagalkar A, Jagtap U, Jadhav J, et al. 2019;Bioresour Technolology. 100:4104–4110
  • Dietz A, Schnoor J. Environ Advances in phytoremediation. Health Perspect. 2001;109:163–168.
  • Kabra AN, Khandare RV, Kurade MB, et al. Phytoremediation of a sulphonated azo dye Green HE4B by Glandularia pulchella (Sweet) Tronc (Moss Verbena). En Sci Poll Res. 2011;18(8):1360–1373.
  • Davies LC, Carias CC, Novais JM, et al. Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow constructed intermittent feeding constructed wetland. Ecol Eng. 2005;25:594–605.
  • Kagalkar A, Jadhav M, Bapat V, et al. Phytodegradation of the triphenylmethane dye Malachite Green mediated by cell suspension cultures of Blumeamalcolmii Hook. Bioresour Technol. 2011;102:10312–10318.
  • Ong S, Uchiyamam K, Inadama D, et al. Simultaneous removal of color organic compounds and nutrients in azo dye containing wastewater using up- of constructed wetland. Bioresour Technol. 2011;101:9049–9057.
  • Saratale RG, Gandhi SS, Purankar MV, et al. Decolorization and detoxification of sulfonated azo dye CI Remazol Red and textile effluent by isolated Lysinibacillus sp RGS. J Biosci Bioeng. 2013;115(6):658–667.
  • Khandare RV, Kabra AN, Tamboli DP, et al. The role of Aster amellus Linn in the degradation of a sulfonated azo dye Remazol Red: a phytoremediation strategy. Chemosphere. 2011b;82:1147–1154. 101016/jchemosphere201012073.
  • Kabra AN, Khandare RV, Kurade MB, et al. Phytoremediation of a sulphonated azo dye green HE4B by Glandulariapulchella (Sweet) Tronc (Moss Verbena). Env Sci and Pollution Res. 2011a;18:1360–1373.
  • Kagalkar AN, Khandare RV, Govindwar SP. Textile dye degradation potential of plant laccase significantly enhances upon augmentation with redox mediators. RSC Adv. 2015;5(98):80505–80517.
  • Yim JH, Kim SJ, Ahn SH, et al. Characterization of a novel bioflocculant p-KG03 from a marine dinoflagellate Gyrodinium impudicum KG03. Bioresour Technol. 2007;98:361–367.
  • Davies LC, Carias CC, Novais JM, et al. Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow constructed intermittent feeding constructed wetland. Ecol Eng. 2005a;25(5):594–605.
  • Kagalkar A, Jagtap U, Jadhav J, et al. Bioresour Technology. 2009; 100:4104–4110
  • Kagalkar AN, Jagtap UB, Jadhav JP, et al. Bapat VA Studies on phytoremediation potentiality of Typhonium flagelliforme for the degradation of Brilliant Blue R. Planta. 2010;232(1):271–285. 101007/s00425-010-1157-2.
  • Rane N, Chandanshive V, Watharkar A, et al. Phytoremediation of sulfonated Remazol Red dye and textile effluents by Alternanthera philoxeroides: an anatomical enzymatic and pilot scale study. Water Res. 2015;83:271–281.
  • Rane N, Patil S, Chandanshive V, et al. Ipomoea hederifolia rooted soil bed and Ipomoea aquatic rhizofiltration coupled phytoreactors for efficient treatment of textile wastewater. Water Res. 2016;96:1–11.
  • Shehzadi M, Afzal M, Khan M, et al. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res. 2014;58:152–159.
  • Chandanshive VV, Rane NR, Tamboli AS, et al. Govindwar SP Co-plantation of aquatic macrophytes Typha angustifolia and Paspalum scrobiculatum for effective treatment of textile industry effluent. J Hazard Mater. 2017;338:47–56.
  • Yadav S, Thawale P, Kulkarni A, et al. Phytoremediation technology for wastewater treatment: high rate transpiration system. Int J Environ Pollut. 2010;43(1/2/3):117–128.
  • Murphy I, Coats J. The capacity of switchgrass (Panicum virgatum) to degrade atrazine in a phytoremediation setting. Environ Toxicol Chem. 2011;30(3):715–722.
  • Uera R, Paz-Alberto A, Sigua G. Phytoremediation potentials of selected tropical plants for ethidium bromide. Environ Sci Pollut Res Int. 2007;14(7):505–509.
  • Roy S, Labelle S, Meht P, et al. Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil. 2005;272(1–2):277–290.
  • Gerhardt KE, Huang XD, Glick BR, et al. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. 2009;176(1):20–30.
  • Weyens N, Lelie D, Taghavi S, et al. Phytoremediation: planteendophyte partnerships take the challenge. Curr Opin Biotechnol. 2009;20(2):248–254.
  • Huang XD, El-Alawi YS, Penrose D, et al. A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut. 2004;130(3):465–476.
  • Huang XD, El-Alawi YS, Gurska J, et al. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J. 2005;81(1):139–147.
  • Whiting SN, De Souza MP, Terry N. Rhizosphere Bacteria Mobilize Zn for Hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol. 2001;35(15):3144–3150.
  • Backer R, Rokem JS, Ilangumaran G, et al. Plant growth-promoting rhizobacteria: Context mechanisms of action and roadmap to commercialization of bio stimulants for sustainable agriculture. Front Plant Sci. 2018;9. 103389/fpls201801473.
  • Zaidi S, Usmani S, Singh BR, et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere . 2006;64(6):991–997.
  • Waranusantigul P, Lee H, Kruatrachue M, et al. Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis. Chemosphere. 2011;85(4):584–590.
  • Tesar M, Reichenauer TG, Sessitsch A. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol Biochem. 2002;34(12):1883–892l.
  • Khandare RV, Rane NR, Waghmode TR, et al. Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environ Sci Pollut Res. 2011c;19(5):1709–1718.
  • Ping Y, Zhang Y, Donglu G. Production optimization of a heat-tolerant alkaline pectinase from Bacillus subtilis ZGL14 and its purification and characterization. Bioengineered. 2017;8(5):613–623.
  • Chandanshive V, Rane N, Tamboli A, et al. Co-plantation of aquatic macrophytes Typha angustifolia and Paspalum scrobiculatum for effective treatment of textile industry effluent. J Hazard Mater. 2017;338:47–56.
  • Rane N, Chandanshive V, Watharkar A, et al. Phytoremediation of sulfonated remazol red dye and textile effluents by Alternanthera philoxeroides: an anatomical enzymatic and pilot scale study. Water Res. 2015;83:271–281.
  • Torbati S, Khataee AR, Movafeghi A. Application of watercress (Nasturtium officinale R. Br.) for biotreatment of a textile dye: investigation of some physiological responses and effects of operational parameters. Chem Eng Res Des. 2014;92(10):1934–1941.
  • Torbati S. Artificial neural network modeling of biotreatment of malachite green by Spirodelapolyrhiza: study of plant physiological responses and the dye biodegradation pathway. Process Saf Environ. 2016;99:11–19.
  • Kabra AN, Khandar RV, Kurade MB. Phytoremediation of a sulphonated azo dye Green HE4B by Glandularia pulchella (Sweet) Tronc. (Moss Verbena). Environ SciPollut Res. 2011;18(8):1360–1373.
  • Khataee AR, Dehghan G, Ebadi A, et al. Biological treatment of a dye solution by Macroalgae Chara sp: effect of operational parameters intermediates identification and artificial neural network modeling. BioresourTechnol. 2010;101(7):2252–2258.
  • Khataee AR, Movafeghi A, Torbati S, et al. Phytoremediation potential of duckweed (Lemna minor L) in degradation of CI Acid Blue 92: artificial neural network modeling. Ecotoxicol Environ Saf . 2012;80:291–298.
  • Ledakowicz S, Paździor K. Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods. Molecules. 2021;26(4):870. (Basel Switzerland). ; () 103390/molecules26040870
  • Movafeghi A, Khataee AR, Moradi Z, et al. Biodegradation of direct blue 129 diazo dye by Spirodela polyrrhiza : an artificial neural networks modeling. Int J Phytoremed. 2010;18(4):337–347.
  • Torbati S, Khataee AR, Movafeghi A. Application of watercress (Nasturtium officinale R Br) for biotreatment of a textile dye: investigation of some physiological responses and effects of operational parameters. ChemEng Res Des. 2014;92:1934–1941.
  • Devi S, Murugappan A, Rajesh Kannan R. Sorption of Reactive blue 19 onto freshwater algae and seaweed. Desalin Water Treat. 2015;54(9):2611–2624.
  • Gupta VK, Bhushan R, Nayak A, et al. Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions. Bioremed J. 2014;18(3):179–191.
  • Sayre R. Microalgae: the potential for carbon capture. Bioscience. 2010;60(9):722–727.
  • Al-Fawwaz AT, Abdullah M. Decolorization of methylene blue and malachite green by immobilized desmodesmus sp isolated from North Jordan. Int J Environ Sci Dev. 2016;7(2):95.
  • Chaudhry MT, Zohaib M, Rauf N, et al. Biosorption characteristics of Aspergillus fumigatus for the decolorization of triphenylmethane dye acid violet 49. Appl Microbiol Biotechnol. 2013;98(7):3133–3141.
  • Siong Chai W, Gee Tan W, Siti H, et al. Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environ Pollut. 2021:269116236. 101016/jenvpol2020116236.
  • Jahir Khan M, Rai A, Ahirwar A, et al. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered. 2021;12(2):9531–9549.
  • Yan Cheah W, Loke Show P, Jiun Yap Y, et al. Yeek-Chia Ho & Yang Tao. enhancing microalga chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered. 2020;11(1):61–69.
  • Sen Tan J, Ying Lee S, Wayne Chew K, et al. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered. 2020;11(1):116–129.
  • Thirumagal J, Panneerselvam A. Isolation of azoreductase enzyme in its various forms from Chlorella pyrenoidosa and its immobilization efficiency for treatment of water. International of Journal of Science Research . 2016;5:2133–2138.
  • Pathak VV, Kothari R, Chopra AK, et al. Experimental and kinetic studies for phytoremediation and dye removal by Chlorella pyrenoidosa. From Textile Wastewater J Environ Manage. 2015;163:270–277.
  • Waqas R, Arshad M, Asghar HN, et al. Optimization of factors for enhanced phycoremediation of reactive blue azo dye. Int J Agric Biolog. 2015;17(4):803‒808. doi:10.17957/IJAB/14.0022.
  • Chaudhry MT, Zohaib M, Rauf N, et al. Biosorption characteristics of Aspergillus fumigatus for the decolorization of triphenylmethane dye acid violet 49. Appl Microbiol Biotechnol. 2013;98(7):3133–3141.
  • El Nemr A, Abdelwahab O, Khaled A, et al. Biosorption of direct yellow 12 from aqueous solution using green alga Ulva lactuca. Chem Ecol. 2006;22(4):253–266.
  • Tahir H, Sultan M, Jahanzeb Q. Removal of basic dye methylene blue by using bioabsorbents Ulva lactuca and Sargassum. Afr J Biotechnol. 2008;7:2649–2655.
  • Dahlia MEM. Evaluation of non-viable biomass of Laurenciapapillosa for decolorization of dye waste water. Afr J Biotechnol. 2013;12(17):2215–2223.
  • El Sikaily A, Khaled A, Nemr AE, et al. Removal of methylene blue from aqueous solution by marine green alga Ulva lactuca. Chem Ecol. 2006;22(2):149–157.
  • Ghoneim MM, El-Desoky HS, El-Moselhy KM, et al. Removal of cadmium from aqueous solution using marine green algae Ulva lactuca Egypt. J Aquat Res. 2014;40(3):235–242.
  • Ibrahim WM, Hassan AF, Azab YA. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt J Basic Appl Sci . 2016;3(3):241–249.
  • ElSikaily A, Khaled A, Nemr AE, et al. Removal of Methylene Blue from aqueous solution by marine green alga Ulva lactuca. Chem Ecol. 2006;22(2):149–157.
  • Radha KV, Regupathi I, Arunagiri A, et al. Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochem. 2005;40(10):3337–3345.
  • Hu L, Zeng GM, Chen GG, et al. Treatment of landfill elachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. J Hazard Mater. 2016;301:106–118.
  • Casas N, Parella T, Vincent T, et al. Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere. 2009;75(10):1344–1349.
  • Huiran P, Xiaolin X, Wen Z, et al. Decolorization pathways of anthraquinone dye Disperse Blue 2BLN by Aspergillus sp. XJ-2 CGMCC12963. Bioengineered. 2017;8(5):630–641.
  • Chaudhry MT, Zohaib M, Rauf N, et al. Biosorption characteristics of Aspergillus fumigatus for the decolorization of triphenylmethane dye acid violet 49. Appl Microbiol Biotechnol. 2013;98(7):3133–3141.
  • Chen SH, Ting ASY. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp isolated from compost. J Environ Manage. 2015a;150:274–280.
  • Chen SH, Ting ASY. Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. Int Biodeterior Biodegr. 2015b;103:1–7.
  • Shedbalkar U, Dhanve R, Jadhav J. Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. J Hazard Mater. 2008;157(2–3):472–479.
  • Hofrichter M, Ullrich R, Pecyna MJ, et al. New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol. 2010;87(3):871–897.
  • Trovaslet M, Enaud E, Guiavarc’h Y, et al. Potential of a Pycnoporussanguineus laccase in bioremediation of wastewater and kinetic activation in the presence of an anthraquinonic acid dye. Enzyme Microb Technol. 2007;41(3):368–376.
  • Chen SH, Ting ASY. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp isolated from compost. J Environ Manage. 2015a;150:274–280.
  • Munck C, Thierry E, Gräßle S, et al. Bio film formation of filamentous fungi Coriolopsis sp on simple muslin cloth to enhance removal of triphenylmethane dyes. Environ Manage. 2018;214:261–266.
  • Huiran P, Xiaolin X, Zhu W, et al. Decolorization pathways of anthraquinone dye Disperse Blue 2BLN by Aspergillus sp XJ-2 CGMCC12963. Bioengineered. 2017;8(5):630–641.
  • Martorell MM, Pajot HF, de Figueroa LIC. Dye-decolourizing yeasts isolated from Las Yungas rainforest Dye assimilation and removal used as selection criteria. Int Biodetr Biodegr. 2012;66(1):25–32.
  • Farah JY, El-Gendy NS, Farahat LA. Biosorption of Astrazone Blue basic dye from an aqueous solution using dried biomass of Baker’s yeast. J Hazard Mater. 2007;148(1–2):402–408.
  • Lakshmi S, Suvedha K, Sruthi R, et al. Hexavalent chromium sequestration from electronic waste by biomass of Aspergillus carbonarius. Bioengineered. 2020;11(1):708–717.
  • Waghmode TR, Kurade MB, Govindwar SP. Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum MTCC 1360. Int Biodetr Biodegr. 2011;65(3):479–486.
  • Ayed L, Chaieb K, Cheref A, et al. Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination. 2010;260(1–3):137–146.
  • Yang Q, Angly FE, Wang Z, et al. Wastewater treatment systems harbor specific and diverse yeast communities. Biochem Eng J. 2011;58–59:168–176.
  • Waghmode T, Kurade M, Govindwar S. Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum. Int Biodeterior Biodegrad. 2011;65(3):479–486 101016/jibiod201101010.
  • Mahmoud MS. Decolorization of certain reactive dye from aqueous solution using baker’s yeast (Saccharomyces cerevisiae) strain. HBRC J. 2016;12(1):88–98.
  • Yahiaoui C, Kameche M, Innocent C, et al. Conception of yeast microbial desalination cell: applications to dye wastewater treatment and lead removal. Chem Eng Commun. 2020;1–12. DOI:10.1080/0098644520201721479
  • Charumathi D, Das N. Biotechnological approach to assess the performance of dried biomass of Candida tropicalis for removal of basic violet 3 from aqueous solution. Int J Sci Nat. 2010;1:47–52.
  • Jadhav JP, Govindwar SP. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast. 2006;23(4):315–323.
  • Karaman C, Karaman O, Show P-L, et al. Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: equilibrium kinetic and thermodynamic modeling and forecasting via artificial neural network approach. Chemosphere. 2022;290:133346. 101016/jchemosphere2021133346.
  • Shekher Giri B, Gun S, Pandey S, et al. Reusability of brilliant green dye contaminated wastewater using corncob biochar and Brevibacillus parabrevis: hybrid treatment and kinetic studies. Bioengineered. 2020;11(1):743–758.
  • Kalme SD, Parshetti GK, Jadhav SU, et al. Biodegradation of benzidine based dye direct blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol. 2007;98(7):1405–1410.
  • Telke A, Kalyani D, Jadhav J, et al. Kinetics and mechanism of reactive141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161. Acta Chim Slov. 2008;55:320–329.
  • Shindhal T, Rakholiya P, Varjani S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2021;12:1 70–87.
  • Varjani S, Rakholiya P, Ng HY, et al. Microbial degradation of dyes. An Overview Bioresour Technol . 2020;314:123728.
  • Jadhav SU, Kalme SD, Govindwar SP. Biodegradation of methyl Red by Galactomyces geotrichum MTCC 1360. Int Bio Deterior Biodegra. 2008;62(2):135–142.
  • Delee W, Neill C, Hawkes F, et al. Anaerobic treatment of textile effluents: a review. J Chem Technol Biotechnol. 1998;73(4):323–335.
  • Georgiou D, Hatiras J, Aivasidis A. Microbial immobilization in a two-stage fixed-bed-reactor pilot plant for on-site anaerobic decolorization of textile wastewater. Enzyme Microb Technol. 2005;37(6):597–605.
  • Anastasi A, Spina F, Prigione V, et al. Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresour Technol. 2010;101(9):3067–3075.
  • Hai F, Yamamoto K, Nakajima F, et al. Bioaugmented membrane bioreactor (MBR) with a GAC packed zone for high rate textile wastewater treatment. Water Res. 2011;45(6):2199–2206.
  • Wong Y. Laccase-catalyzed decolorization of synthetic dyes. Water Res. 1999;33(16):3512–3520.
  • Dayaram P, Dasgupta D. Decolorisation of synthetic dyes and textile wastewater using Polyporus rubidus. journal of Environmental Biology. 2008;29(6):831–836.
  • Ulla M, Osma JF, Winquist E, et al. Decolorization of simulated textile dye baths by crude laccases from Trametes hirsuta and Cerrena unicolor. Eng Life Sci. 2010;10(3):242–247.
  • Telke A, Kalyani D, Jadhav J, et al. Kinetics and mechanism of reactive141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161. Acta Chim Slov. 2008;55:320–329.
  • Peter R, Mojca J, Primoz P. Genetically modified organisms (GMOs. Encycl Environ Health. 2011;2(3):199–207.
  • Mishra B, Varjani S, Iragavarapu GP, et al. Microbial fingerprinting of potential biodegrading organisms. Curr Pollut Rep. 2019;1–17. DOI:10.1007/s40726-019-00116-5
  • Li H, Wang Y, Wang Y, et al. Bacterial degradation of anthraquinone dyes. J Zhejiang Uni-Sci B. 2019;20(6):528–540.
  • Wang Q, Liu S, Gao H. Treatment of hydroxyquinone-containing wastewater using precipitation method with barium salt. Water Sci Eng. 2019;12(1):55–796 61.
  • Varjani S, Upasani VN, Pandey A. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci Total Environ. 2020;737:139766.
  • Rebello S, Kumar Nathan V, Sindhu R, et al. Bioengineered microbes for soil health restoration: present status and future. Bioengineered. 2021;12(2):12839–12853.
  • Kumar V, Chandra R, Thakur IS, et al. Recent advances in physicochemical and biological treatment approaches for distillery wastewater. In: Shah M, Banerjee A, editors. Combined Application of Physico Chemical and Microbiological Processes for Industrial Effluent Treatment Plant. Vol. 620, (CRC Press Boca Raton). 2020. pp. 79–118. https://doi.org/10.1201/9781003029885.
  • Mishra B, Varjani S, Kumar G, et al. Microbial approaches for remediation of pollutants: Innovations future outlook and challenges. Energy Environ. 2021;32(6):1029–1058. doi:10.1177/0958305X19896781.
  • Peter R, Mojca J, Primoz P. Genetically modified organisms (GMOs). Encycl Environ Health. 2011;2(3):199–207.
  • Tahri N, Bahafid W, Sayel H, et al. Biodegradation: Involved microorganisms and genetically engineered microorganisms in: biodegradation – life of science. In:: Chamy R, Rosenkranz F, editors. janezaTrdine. Intech Open Rijeka Croatia, (London). 2013. p. 289–320.
  • Saxena G, Kishor R, Saratale GD, et al. Genetically modified organisms (GMOs) and their potential in environmental management: constraints prospects and challenges bioremediation of industrial waste for environmental safety. In: Bharagava R, Saxena G, editors. Bioremediation of Industrial Waste for Environmental Safety Springer Singapore. 2019. p. 1–19.
  • Kumar V, Chandra R, Thakur IS, et al. Recent Advances in Physicochemical and Biological Treatment Approaches for Distillery Wastewater. In: Shah M, Banerjee A, editors. Combined application of physico chemical and microbiological processes for industrial effluent treatment plant, 620. Singapore: Springer; 2020. 79–118.
  • Saxena G, Kishor R, Saratale GD, et al. Genetically modified organisms (GMOs) and their potential in environmental management: Constraints prospects and challenges bioremediation of industrial waste for environmental safety. In: Bharagava R, Saxena G, editors. Bioremediation of Industrial Waste for Environmental Safety (Singapore: Springer). 2019. p. 1–19.
  • Urgun-Demirtas M, Stark B, Pagilla K. Use of Genetically Engineered Microorganisms (GEMs) for the Bioremediation of Contaminants. Crit Rev Biotechno. 2006;26(3):145–164.
  • Holst-Jensen A, Spilsberg B, Arulandhu AJ, et al. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products. Anal Bioanal Chem. 2016;408(17):4595–4614.
  • Mishra S, Nayak JK, Maiti A. Bacteria-mediated bio-degradation of reactive azo dyes coupled with bio-energy generation from model wastewater. Clean Techn Environ Policy. 2020;22(3):651–667 doiorg/101007/s10098-020-01809-y.
  • Sandhya S, Sarayu K, Uma B, et al. Decolorizing kinetics of a recombinant Escherichia coli SS125 strain harboring azoreductase gene from Bacillus latrosporus RRK1. Bioresour Technol. 2008;99(7):2187–2191.
  • Jin R, Yang H, Zhang A, et al. Bioaugmentation on decolorization of CI Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mater. 2009;163(2–3):1123–1128.
  • Ajaz M, Shakeel S, Rehman A. Microbial use for azo dye degradation-a 463 strategy for dye bioremediation. Int Microbiol. 2020;23(2):149‐159.
  • Jihane C, Monia K, Mahmoud R, et al. Removal of Triphenylmethane Dyes by Bacterial Consortium. Sci World J. 2012. DOI:10.1100/2012/512454
  • Kumar RS, Banerjee UC. Decolourization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme Microbial Technol. 1999;24(7):433–437.
  • Kavita V, Kuhad RC, Saxena RK. Decolorization of triphenylmethane dyes by the bird’s nest fungus. Cyathusbulleri Curr Microbiol. 1995. 30:269–272.10.1007/BF00295500.
  • Waqas R, Arshad M, Asghar HN, et al. Optimization of Factors for Enhanced Phycoremediation of Reactive Blue Azo Dye. Int J Agric Biol. 2015;17(4):803–808.
  • Waranusantigul P, Lee H, Kruatrachue M, et al. Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis. Chemosphere. 2011;85(4):584–590.
  • Weyens N, Lelie D, Taghavi S, et al. Phytoremediation: plante endophyte partnerships take the challenge. Curr Opin Biotechnol. 2009;20(2):248–254.
  • Jihane C, Monia K, Mahmoud R, et al. Removal of Triphenylmethane Dyes by Bacterial Consortium. Sci World J. 2012;1–9.
  • Wang S, Li H. Kinetic modeling and mechanism of dye adsorption on unburned carbon. Dyes Pigment. 2007;72(3):308–314.
  • Gong WX, Wang SG, Sun XF, et al. Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresour Technol. 2008;99(11):4668–4674.
  • Zhang CL, Cui Y, Wang Y. Bioflocculant produced from bacteria for decolorization Cr removal and swine wastewater application. Sustain Environ Res. 2012;22:129–134.
  • Sirianuntapiboon S, Srisornsak P. Removal of disperses dyes from textile wastewater using bio-sludge. Bioresour Technol. 2007;98(5):1057–1066.
  • Mittal AK, Gupta SK. Biosorption of cationic dyes by dead macro-fungus Fomitopsiscarnea: batch studies. Water Sci Technol. 1996;34(10):157–181.
  • Pearce CI, Lloyd JR, Guthrie JT. The removal of colour from textile wastewater using whole bacterial cells. Dyes Pigm. 2003;58(3):179–196.
  • Fang R, Cheng X, Xu X. Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresour Technol. 2010;101(19):7323–7329.
  • Xie XH, Zheng XL, Yu CZ, et al. High-efficient biodegradation of refractory dye by a new bacterial flora DDMY1 under different conditions. Int J Environ Sci Technol. 2020;17(3):1491–1502101007/s13762-019-02582.
  • Zhou JL, Banks CJ. Removal of humic acid fractions by Rhizopus arrhizus: Uptake and kinetic studies. Environ Technol. 1991;12(10):859–869.
  • Zhou JL, Banks CJ. Mechanism of humic acid colour removal from natural waters by fungal biomass biosorption. Chemosphere. 1993;27(4):607–620.
  • Aksu Z, Tezer S. Equilibrium and kinetic modelling of biosorption of remazol black B by Rhizopus arrhizus in a batch system: effect of temperature. Process Biochem. 2006;36(5):431–439.
  • Pearce CI, Lloyd JR, Guthrie JT. The removal of color from textile wastewater using whole bacterial cells. Dyes Pigm. 2003;58(3):179–196.
  • Xie XH, Zheng XL, Yu CZ, et al. High-efficient biodegradation of refractory dye by a new bacterial flora DDMY1 under different conditions. Int J Environ Sci Technol. 2020;17(3):1491–1502101007.
  • Zubair M, Ihsanullah I, Jarrah N, et al. Starch-NiFe-layered double hydroxide composites: efficient removal of methyl Orange from aqueous phase. J Mol Liq. 2018;249:101016/jmolliq201711022.
  • Yahiaoui C, Kameche M, Innocent C, et al. Conception of yeast microbial desalination cell: applications to dye wastewater treatment and lead removal. Chem Eng Commun. 2020;1–12. DOI:10.1080/0098644520201721479
  • Jin X-C, Liu G-Q, Xu ZH, et al. Decolorization of a Dye Industry Effluent by Aspergillus fumigatus XC6 Applied. Microbiol Biotechnol. 2007;74(1):239–243.
  • Ishak SA, Murshed MF, Md Akil H, et al. The application of modified natural polymers in toxicant dye compounds wastewater: a review. Water. 2020;12(7):2032.
  • Chung WJ, Shim J, Ravindran B. Application of wheat bran based biomaterials and nano-catalyst in textile wastewater. J King Saud Univ Sci. 2022;34(2):101775. doi: 10.1775101016/jjksus2021101775
  • Mohamed Khalith SB, Rishabb R, Anirud Raghavendra R, et al. Synthesis and characterization of magnetite carbon nanocomposite from agro waste as chromium adsorbent for effluent treatment. Environ Res. 2021;202111669:10.1016/jenvres2021111669.
  • Parrilli E, Papa R, Luisa Tutino M, et al. Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds. Bioengineered Bugs. 2010;1(3):213–216.