1,786
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Potential use of olive oil mill wastewater for bacterial cellulose production

ORCID Icon & ORCID Icon
Pages 7659-7669 | Received 20 Jan 2022, Accepted 02 Mar 2022, Published online: 09 Mar 2022

References

  • Römling U, Galperin MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol. 2015;23(9):545–557.
  • Singhania RR, Patel AK, Tsai ML, et al. Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered. 2021;12(1):6793–6807.
  • Blanco Parte FG, Santoso SP, Chou CC, et al. Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol. 2020;40(3):397–414.
  • Lin SP, Calvar IL, Catchmark JM, et al. Biosynthesis, production and applications of bacterial cellulose. Cellulose. 2013;20(5):2191–2219.
  • Hu W, Chen S, Yang J, et al. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym. 2014;101:1043–1060.
  • Cacicedo ML, Castro MC, Servetas I, et al. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol. 2016;213:172–180.
  • Choi SM, Shin EJ. The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials. 2020;10(3):406.
  • Moniri M, Boroumand Moghaddam A, Azizi S, et al. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials. 2017;7(9):257.
  • Gorgieva S, Trček J. Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials. 2019;9(10):1352.
  • Dursun B, Sar T, Ata A, et al. Pyrolyzed bacterial cellulose-supported SnO2 nanocomposites as high-capacity anode materials for sodium-ion batteries. Cellulose. 2016;23(4):2597–2607.
  • Celik KB, Cengiz EC, Sar T, et al. In-situ wrapping of tin oxide nanoparticles by bacterial cellulose derived carbon nanofibers and its application as freestanding interlayer in lithium sulfide based lithium-sulfur batteries. J Colloid Interface Sci. 2018;530:137–145.
  • Reshmy R, Philip E, Thomas D, et al. Bacterial nanocellulose: engineering, production, and applications. Bioengineered. 2021;12(2):11463.
  • Shi Z, Zhang Y, Phillips GO, et al. Utilization of bacterial cellulose in food. Food Hydrocoll. 2014;35:539–545.
  • Park JK, Jung JY, Khan T Bacterial cellulose. In Eds: Phillips G.O. and Williams P.A.,Handbook of hydrocolloids. Cambridge, UK.: Woodhead Publishing; 2009. p. 724–739.
  • Son HJ, Kim HG, Kim KK, et al. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol. 2003;86(3):215–219.
  • Hussain Z, Sajjad W, Khan T, et al. Production of bacterial cellulose from industrial wastes: a review. Cellulose. 2019;26(5):2895–2911.
  • Sar T, Ozturk M, Taherzadeh MJ, et al. New insights on protein recovery from olive oil mill wastewater through bioconversion with edible filamentous fungi. Processes. 2020;8(10):1210.
  • Dermeche S, Nadour M, Larroche C, et al. Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem. 2013;48(10):1532–1552.
  • Papazi A, Pappas I, Kotzabasis K. Combinational system for biodegradation of olive oil mill wastewater phenolics and high yield of bio-hydrogen production. J Biotechnol. 2019;306:47–53.
  • Abrunhosa L, Oliveira F, Dantas D, et al. Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess Biosyst Eng. 2013;36(3):285–291.
  • D’Annibale A, Sermanni GG, Federici F, et al. Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresour Technol. 2006;97(15):1828–1833.
  • Meneses DP, Gudiña EJ, Fernandes F, et al. The yeast-like fungus Aureobasidium thailandense LB01 produces a new biosurfactant using olive oil mill wastewater as an inducer. Microbiol Res. 2017;204:40–47.
  • Cioffi G, Pesca MS, De Caprariis P, et al. Phenolic compounds in olive oil and olive pomace from Cilento (Campania, Italy) and their antioxidant activity. Food Chem. 2010;121(1):105–111.
  • Tekin AR, Dalgıç AC. Biogas production from olive pomace. ResouConserv Recycl. 2000;30(4):301–313.
  • Gomes FP, Silva NH, Trovatti E, et al. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy. 2013;55:205–211.
  • López-Piñeiro A, Murillo S, Barreto C, et al. Changes in organic matter and residual effect of amendment with two-phase olive-mill waste on degraded agricultural soils. SciTotal Environ. 2007;378(1–2):84–89.
  • Garcı́a AM, Moumen A, Ruiz DY, et al. Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Anim Feed Sci Technol. 2003;107(1–4):61–74.
  • Sar T, Stark BC, Akbas MY. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin. Bioengineered. 2017;8(2):171–181.
  • Hestrin S, Schramm MJBJ. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J. 1954;58(2):345.
  • Mohammadkazemi F, Azin M, Ashori A. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym. 2015;117:518–523.
  • Segal LGJMA, Creely JJ, Martin AE Jr, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J. 1959;29(10):786–794.
  • Arabi M, Elias A, Kamel Z, et al. Characterization of olive mill wastewater and gamma irradiation effects on some parameters of its composition. J Radioanal Nucl Chem. 2018;317(2):1095–1106.
  • Huang C, Yang XY, Xiong L, et al. Evaluating the possibility of using acetone‐butanol‐ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett Appl Microbiol. 2015;60(5):491–496.
  • Zakaria J, Nazeri M (2012). Optimization of bacterial cellulose production from pineapple waste: effect of temperature, pH and concentration. In 5th Engineering Conference,” Engineering Towards Change-Empowering Green Solutions, Kuching Sarawak, Malaysia. (pp. 10–12).
  • Vazquez A, Foresti ML, Cerrutti P, et al. Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ. 2013;21(2):545–554.
  • Ramana KV, Tomar A, Singh L. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol. 2000;16(3):245–248.
  • Naritomi T, Kouda T, Yano H, et al. Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng. 1998;85(6):598–603.
  • Yang XY, Huang C, Guo HJ, et al. Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus. Indian J Microbiol. 2014;54(3):268–273.
  • Güzel M, Akpınar Ö. Production and characterization of bacterial cellulose from citrus peels. Waste Biomass Valorization. 2019;10(8):2165–2175.
  • Kurosumi A, Sasaki C, Yamashita Y, et al. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym. 2009;76(2):333–335.
  • Güzel M, Akpınar Ö. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. Int J Biol Macromol. 2020;162:1597–1604.
  • Hafidi M, Amir S, Revel JC. Structural characterization of olive mill waster-water after aerobic digestion using elemental analysis, FTIR and 13C NMR. Process Biochem. 2005;40(8):2615–2622.
  • Droussi Z, D’orazio V, Provenzano MR, et al. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J Hazard Mater. 2009;164(2–3):1281–1285.
  • El-Saied H, El-Diwany AI, Basta AH, et al. Production and characterization of economical bacterial cellulose. BioResources. 2008;3(4):1196–1217.
  • Trovatti E, Serafim LS, Freire CS, et al. Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr Polym. 2011;86(3):1417–1420.
  • Martín-Ramos P, Carrión-Prieto P, Ruiz-Potosme NM, et al. An analysis of the similarities in the ATR-FTIR spectra from Argania spinosa, Rosa rubiginosa and Elaeis guineensis oils. J Essent Oil Bear Plants. 2017;20(6):1651–1658.
  • Tuck KL, Hayball PJ. Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem. 2002;13(11):636–644.
  • Barshan S, Rezazadeh-Bari M, Almasi H, et al. Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium. Int J Biol Macromol. 2019;136:1188–1195.
  • Jahan F, Kumar V, Saxena RK. Distillery effluent as a potential medium for bacterial cellulose production: a biopolymer of great commercial importance. Bioresour Technol. 2018;250:922–926.
  • Surma-Ślusarska B, Presler S, Danielewicz D. Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres & Textiles in Eastern Europe. 2008;16(4):108–111.
  • Jung HI, Lee OM, Jeong JH, et al. Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl Biochem Biotechnol. 2010;162(2):486–497.
  • Jung HI, Jeong JH, Lee OM, et al. Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour Technol. 2010;101(10):3602–3608.
  • Keshk S, Sameshima K. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol. 2006;72(2):291–296.
  • Yamamoto H, Horii F, Hirai A. In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses Iα and Iβ at the early stage of incubation. Cellulose. 1996;3(1):229–242.
  • Abdan KB, Yong SC, Chiang ECW, et al. Barrier properties, antimicrobial and antifungal activities of chitin and chitosan-based IPNs, gels, blends, composites, and nanocomposites. In Eds. Gopi S., Thomas S. and Pius A., Handbook of Chitin and Chitosan. Amsterdam, Netherlands: Elsevier; 2020. p. 175–227.
  • Golmohammadi H, Morales-Narváez E, Naghdi T, et al. Nanocellulose in sensing and biosensing. Chem Mater. 2017;29(13):5426–5446.
  • Budhiono A, Rosidi B, Taher H, et al. Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym. 1999;40(2):137–143.
  • Behera B, Laavanya D, Balasubramanian P. Techno-economic feasibility assessment of bacterial cellulose biofilm production during the Kombucha fermentation process. Bioresour Technol. 2022;346:126659.
  • Sheu F, Wang CL, Shyu YT. Fermentation of Monascus purpureus on bacterial cellulose‐nata and the color stability of Monascus‐nata complex. J Food Sci. 2000;65(2):342–345.
  • Purwadaria T, Gunawan L, Gunawan AW. The production of nata colored by Monascus purpureus J1 pigments as functional food. Microbiol Indonesia. 2010;4(1):2.