11,087
Views
14
CrossRef citations to date
0
Altmetric
Review

A review on biofiltration techniques: recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water

, , , , &
Pages 8432-8477 | Received 04 Dec 2021, Accepted 23 Feb 2022, Published online: 28 Mar 2022

References

  • https://sdgs.un.org/ [accessible 16 October 2021].
  • Devda V, Chaudhary K, Varjani S, et al. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements, and perspectives. Bioengineered. 2021 Jan 1; 12(1):4697–4718. 10.1080/21655979.2021.1946631
  • Plaisance H, Vignau-Laulhere J, Mocho P, et al. Volatile organic compounds concentrations during the construction process in newly-built timber-frame houses: source identification and emission kinetics. Environ Sci Processes Impacts. 2017;19(5):696–710.
  • Tisserand R, Young R. 6–The respiratory system. Essential Oil Safety (Second Edition), Edited By: Tisserand, R. And Young, R., Churchill Livingstone, St. Louis, USA. 2014;99–110.
  • Gautam RK, Sharma SK, Mahiya S, et al. Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. Heavy Metals In Water: Presence, Removal and Safety. 2014;1–24. doi:10.1039/9781782620174-00001.
  • Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020 Sep 1;6(9):e04691. DOI:10.1016/j.heliyon.2020.e04691.
  • Azimi A, Azari A, Rezakazemi M, et al. Removal of heavy metals from industrial wastewaters: a review. Chem Bio Eng Rev. 2017 Feb;4(1):37–59.
  • Engwa GA, Ferdinand PU, Nwalo FN , , et al. Mechanism and health effects of heavy metal toxicity in humans. Edited By: Karcioglu, O and Arslan, B., in Poisoning in the Modern World-new Tricks for an Old Dog. 2019 Jun 19; 10.
  • Rani M, Shanker U. Environmental nanotechnology approaches for the remediation of Contaminants. Edited By: Fulekar, MH and Pathak, B, in Bioremediation technology. 2020 Jan 6 doi:10.1201/9780429296031; 311–348. Boca Raton: CRC Press.
  • Madkour LH Ecotoxicology of environmental heavy metal ions and free radicals on macromolecule cell organisms. Bioengineering Applications of Carbon Nanostructures; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany. 2020 . 2020 Sep 1;():1–46 doi:10.1007/978-3-030-37297-2_1.
  • Kumar TP, Rahul MA, Chandrajit B. Biofiltration of volatile organic compounds (VOCs): an overview. Res J Chem Sci. 2011;2231:606X.
  • Jain R, Camarillo MK, Stringfellow WT. Drinking water security for engineers, planners, and managers. Water Distrib Syst. 2014;1–10. doi:10.1016/C2012-0-06924-4.
  • Samer M. Biological and chemical wastewater treatment processes. Wastewater Treat Eng. 2015;150.
  • Nur Hazirah R, Nurhaslina CR, Ku Halim KH. Enhancement of biological approach and potential of Lactobacillus delbrueckii in decolorization of textile wastewater—A review. IOSR J Environ Sci Toxicol Food Technol. 2014;8(11):6–10.
  • Delhoménie MC, Heitz M. Biofiltration of air: a review. Crit Rev Biotechnol. 2005 Jan 1; 25(1–2):53–72. 10.1080/07388550590935814
  • De Sanctis M, Murgolo S, Altieri VG, et al. An innovative biofilter technology for reducing environmental spreading of emerging pollutants and odour emissions during municipal sewage treatment. SciTotal Environ. 2022 Jan 10; 803:149966.10.1016/j.scitotenv.2021.149966
  • Al-Sahari M, Al-Gheethi A, Mohamed RM, et al. Green approach and strategies for wastewater treatment using bioelectrochemical systems: a critical review of fundamental concepts, applications, mechanism, and future trends. Chemosphere. 2021 Dec 1; 285:131373.10.1016/j.chemosphere.2021.131373
  • Kumar M, Singh R. Sewage water treatment with energy recovery using constructed wetlands integrated with a bioelectrochemical system. Environ Sci Water Res Technol. 2020;6(3):795–808.
  • Taherzadeh MJ. Bioengineering to tackle environmental challenges, climate changes and resource recovery. Bioengineered. 2019;10(1):698–699.
  • Bressani-Ribeiro T, Almeida PG, Volcke EI, et al. Trickling filters following anaerobic sewage treatment: state of the art and perspectives. Environ Sci Water Res Technol. 2018;4(11):1721–1738.
  • Leson G, Winer AM. Biofiltration: an innovative air pollution control technology for VOC emissions. J Air Waste Manag Assoc. 1991 Aug 1; 41(8):1045–1054. 10.1080/10473289.1991.10466898
  • Pomeroy RD, inventor. De-odoring of gas streams by the use of micro-biological growths. United States patent US 2,793,096. 1957 May 21.
  • Biard PF, Couvert A, Renner C. Intensification of volatile organic compound absorption in a compact wet scrubber at co-current flow. Chemosphere. 2017 Apr 1; 173:612–621.10.1016/j.chemosphere.2017.01.075
  • Ma CM, Hong GB, Chang CT. Decomposition of chlorinated volatile organic compound by metal catalytic incineration. Int J Mater Mech Manuf. 2013;1:236–239.
  • Lin B, Liaw SL. Simultaneous removal of volatile organic compounds from cooking oil fumes by using gas-phase ozonation over Fe (OH) 3 nanoparticles. J Environ Chem Eng. 2015 Sep 1; 3(3):1530–1538. 10.1016/j.jece.2015.05.026
  • Brodu N, Zaitan H, Manero MH, et al. Removal of volatile organic compounds by heterogeneous ozonation on microporous synthetic alumina silicate. Water Sci Technol. 2012 Nov;66(9):2020–2026.
  • Song M, Kim K, Cho C, et al. Reduction of volatile organic compounds (VOCs) emissions from laundry dry-cleaning by an integrated treatment process of condensation and adsorption. Processes. 2021 Sep;9(9):1658.
  • Cho WC, Poo KM, Lee JE, et al. Optimum dimensionally stable anode with volatilization and electrochemical advanced oxidation for volatile organic compounds treatment. J Korean Soc Water Wastewater. 2019;33(1):31–41.
  • Satilmis B, Uyar T. Electrospinning of ultrafine poly (1-trimethylsilyl-1-propyne) [ptmsp] fibers: highly porous fibrous membranes for volatile organic compound removal. ACS Appl Polym Mater. 2019 Mar 8; 1(4):787–796. 10.1021/acsapm.9b00027
  • Vilela D, Parmar J, Zeng Y, et al. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 2016 Apr 13; 16(4):2860–2866. 10.1021/acs.nanolett.6b00768
  • Qin Q, Wu X, Chen L, et al. Simultaneous removal of tetracycline and Cu (II) by adsorption and coadsorption using oxidized activated carbon. RSC Adv. 2018;8(4):1744–1752.
  • Saleh TA. Isotherm, kinetic, and thermodynamic studies on Hg (II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ Sci Pollut Res. 2015 Nov;22(21):16721–16731.
  • Alghamdi AA, Al-Odayni AB, Saeed WS, et al. Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials. 2019 Jan;12(12):2020.
  • Panda L, Jena SK, Rath SS, et al. Heavy metal removal from water by adsorption using a low-cost geopolymer. Environ Sci Pollut Res. 2020 Jul;27(19):24284–24298.
  • Min XB, Min Z, Chai LY, et al. Treatment of nickel-ammonia complex ion-containing ammonia nitrogen wastewater. Trans Nonferrous Met Soc China. 2009 Oct 1; 19(5):1360–1364. 10.1016/S1003-6326(08)60450-1
  • Jackson DG, Looney BB, Craig RR, et al. Development of chemical reduction and air stripping processes to remove mercury from wastewater. J Environ Eng. 2013 Nov 1; 139(11):1336–1342. 10.1061/(ASCE)EE.1943-7870.0000761
  • Ge J, Guha B, Lippincott L, et al. Challenges of arsenic removal from municipal wastewater by coagulation with ferric chloride and alum. SciTotal Environ. 2020 Jul 10; 725:138351.10.1016/j.scitotenv.2020.138351
  • Liao ZL, Zhao ZC, Zhu JC, et al. Complexing characteristics between Cu (II) ions and dissolved organic matter in combined sewer overflows: implications for the removal of heavy metals by enhanced coagulation. Chemosphere. 2021 Feb 1; 265:129023.10.1016/j.chemosphere.2020.129023
  • Xu T, Zhou Y, Lei X, et al. Study on highly efficient Cr (VI) removal from wastewater by sinusoidal alternating current coagulation. J Environ Manage. 2019 Nov 1; 249:109322.10.1016/j.jenvman.2019.109322
  • Wang T, Wang Q, Soklun H, et al. A green strategy for simultaneous Cu (II)-EDTA decomplexation and Cu precipitation from water by bicarbonate-activated hydrogen peroxide/chemical precipitation. Chem Eng J. 2019 Aug 15; 370:1298–1309.10.1016/j.cej.2019.04.005
  • Zhang Y, Duan X. Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Sci Technol. 2020 Mar 15; 81(6):1130–1136. 10.2166/wst.2020.208
  • Liu C, Wu T, Hsu PC, et al. Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode. ACS nano. 2019 May 22; 13(6):6431–6437. 10.1021/acsnano.8b09301
  • Kumar J, Joshi H, Malyan SK. Removal of copper, nickel, and zinc ions from an aqueous solution through electrochemical and nanofiltration membrane processes. Appl Sci. 2022 Jan;12(1):280.
  • Gash AE, Spain AL, Dysleski LM, et al. Efficient recovery of elemental mercury from Hg (II)-contaminated aqueous media using a redox-recyclable ion-exchange material. Environ Sci Technol. 1998 Apr 1; 32(7):1007–1012. 10.1021/es970804n
  • Bezzina JP, Ruder LR, Dawson R, et al. Ion exchange removal of Cu (II), Fe (II), Pb (II) and Zn (II) from acid extracted sewage sludge–resin screening in weak acid media. Water Res. 2019 Jul 1; 158:257–267.10.1016/j.watres.2019.04.042
  • Liu W, Wang D, Soomro RA, et al. Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination. J Membr Sci. 2019 Dec 1; 591:117323.10.1016/j.memsci.2019.117323
  • Karim Z, Mathew AP, Kokol V, et al. High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Adv. 2016;6(25):20644–20653.
  • Soreanu G, Dixon M, Darlington A. Botanical biofiltration of indoor gaseous pollutants–A mini-review. Chem Eng J. 2013 Aug 1; 229:585–594.10.1016/j.cej.2013.06.074
  • Barbosa VL, Tandlich R, Burgess JE. Bioremediation of trace organic compounds found in precious metals refineries’ wastewaters: a review of potential options. Chemosphere. 2007 Jul 1; 68(7):1195–1203. 10.1016/j.chemosphere.2007.01.018
  • Meena M, Sonigra P, Yadav G. Biological-based methods for the removal of volatile organic compounds (VOCs) and heavy metals. Environ Sci Pollut Res. 2021 Jan;28(3):2485–2508.
  • Gopinath M, Pulla RH, Rajmohan KS, et al. Bioremediation of volatile organic compounds in biofilters. In: Edited By: Varjani S., Agarwal A., Gnansounou E., Gurunathan B.In Bioremediation: applications for environmental protection and management 2018. Singapore: Springer. p. 301–330 doi:10.1007/978-981-10-7485-1_15.
  • Adler SF. Biofiltration- a Primer. Chem Eng Prog. 2001 Apr 1;97(4):33–41.
  • Boehm AB, Bell CD, Fitzgerald NJ, et al. Biochar-augmented biofilters to improve pollutant removal from stormwater–can they improve receiving water quality? Environ Sci Water Res Technol. 2020;6(6):1520–1537.
  • Ralebitso-Senior TK, Senior E, Di Felice R, et al. Waste gas biofiltration: advances and limitations of current approaches in microbiology. Environ Sci Technol. 2012 Aug 21;46(16):8542–8573.
  • Swanson WJ, Loehr RC. Biofiltration: fundamentals, design and operations principles, and applications. J Environ Eng. 1997 Jun;123(6):538–546.
  • Bohn H. Consider biofiltration for decontaminating gases. Chem Eng Prog. 1992;88:34–40.
  • Wani AH , Branion, RM, Lau, AK Biofiltration: A promising and cost‐effective control technology for Odors, VOCs and air toxics. Journal of Environmental Science & Health Part A. 2012 Aug 1 1997;32(7):2027–2055.
  • Fulazzaky MA, Talaiekhozani A, Ponraj M, et al. Biofiltration process as an ideal approach to remove pollutants from polluted air. Desalin Water Treat. 2014 Jun 7; 52(19–21):3600–3615. 10.1080/19443994.2013.854102
  • Schroeder ED. Trends in application of gas-phase bioreactors. Rev Environ Sci Biotechnol. 2002 Mar;1(1):65–74.
  • Chaudhary DS, Vigneswaran S, Ngo HH, et al. Biofilter in water and wastewater treatment. Korean J Chem Eng. 2003 Nov;20(6):1054–1065.
  • Baltrėnas P, Baltrėnaitė E. Natural and inoculated microorganisms as important component for sustainability of biofiltration system. In: Edited By: Baltrėnas P and Baltrėnaitė E, In Sustainable environmental protection technologies 2020. Cham: Springer. p. 433–482.
  • Padhan D, Rout PP, Kundu R, et al. Bioremediation of heavy metals and other toxic substances by microorganisms. Soil Biorem Sustainable Technol. 2021 Mar;29:285–329.
  • Srivastava AK, Singh RK, Singh D. Microbe-based bioreactor system for bioremediation of organic contaminants: present and future perspective. Edited By: Kumar A, Singh VK, Singh, P and Sing D, In Microbe mediated remediation of environmental contaminants 2021 Jan 1. Woodhead Publishing; 241–253.
  • Rathore S, Desai PM, Liew CV, et al. Microencapsulation of microbial cells. J Food Eng. 2013 May 1; 116(2):369–381. 10.1016/j.jfoodeng.2012.12.022
  • Park JK, Chang HN. Microencapsulation of microbial cells. Biotechnol Adv. 2000 Jul 1; 18(4):303–319. 10.1016/S0734-9750(00)00040-9
  • Soccol CR, Woiciechowski AL, Vandenberghe LP, et al. Biofiltration: an emerging technology. Indian Journal of Biotechnology. . 2003; 2 ;396–410.
  • Cohen Y. Biofiltration–the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresour Technol. 2001 May 1; 77(3):257–274. 10.1016/S0960-8524(00)00074-2
  • Peng C, Huang H, Gao Y, et al. A novel start-up strategy for mixotrophic denitrification biofilters by rhamnolipid and its performance on denitrification of low C/N wastewater. Chemosphere. 2020 Jan 1; 239:124726.10.1016/j.chemosphere.2019.124726
  • Malhautier L, Khammar N, Bayle S, et al. Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol. 2005 Jul;68(1):16–22.
  • Cassidy MB, Lee H, Trevors JT. Environmental applications of immobilized microbial cells: a review. J Ind Microbiol Biotechnol. 1996 Feb 1; 16(2):79–101. 10.1007/BF01570068
  • Shivajirao PA. Treatment of distillery wastewater using membrane technologies. Int J Adv Eng Res Stud. 2012 Jun;1(3):275–283.
  • Chen W, Su Y, Peng J, et al. Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces. Environ Sci Technol. 2011 Aug 1; 45(15):6545–6552. 10.1021/es200994n
  • Gohari RJ, Halakoo E, Lau WJ, et al. Novel polyethersulfone (PES)/hydrous manganese dioxide (HMO) mixed matrix membranes with improved anti-fouling properties for oily wastewater treatment process. RSC Adv. 2014;4(34):17587–17596.
  • Maestre JP, Gamisans X, Gabriel D, et al. Fungal biofilters for toluene biofiltration: evaluation of the performance with four packing materials under different operating conditions. Chemosphere. 2007 Mar 1; 67(4):684–692. 10.1016/j.chemosphere.2006.11.004
  • Zamir SM, Halladj R, Nasernejad B. Removal of toluene vapors using a fungal biofilter under intermittent loading. Process SafEnviron Prot. 2011 Jan 1; 89(1):8–14. 10.1016/j.psep.2010.10.001
  • Padhi SK, Gokhale S. Benzene control from waste gas streams with a sponge-medium based rotating biological contactor. Int Biodeterior Biodegrad. 2016 Apr 1; 109:96–103.10.1016/j.ibiod.2016.01.007
  • Repečkienė J, Švedienė J, Paškevičius A, et al. Succession of microorganisms in a plate-type air treatment biofilter during filtration of various volatile compounds. Environ Technol. 2015 Apr 3; 36(7):881–889. 10.1080/09593330.2014.965227
  • Devinny JS, Deshusses MA, Webster TS. Biofiltration for air pollution control. CRC Press, Boca Raton. 2017 Nov 22.
  • Márquez P, Herruzo-Ruiz AM, Siles JA, et al. Influence of packing material on the biofiltration of butyric acid: a comparative study from a physico-chemical, olfactometric and microbiological perspective. J Environ Manage. 2021 Sep 15;294:113044.10.1016/j.jenvman.2021.113044.
  • Amin MM , Rahimi, A, Bina, B et al Performance evaluation of a scoria-compost biofilter treating xylene vapors. Journal of Environmental Health Science and Engineering. 2021 Dec 2014;12 1 :1–10.
  • Afrooz AN, Pitol AK, Kitt D, et al. Role of microbial cell properties on bacterial pathogen and coliphage removal in biochar-modified stormwater biofilters. Environ Sci Water Res Technol. 2018;4(12):2160–2169.
  • Sakuma T, Hattori T, Deshusses MA. Comparison of different packing materials for the biofiltration of air toxics. J Air Waste Manag Assoc. 2006 Nov 1; 56(11):1567–1575. 10.1080/10473289.2006.10464564
  • Andres Y, Dumont E, Le Cloirec P, et al. Wood bark as packing material in a biofilter used for air treatment. Environ Technol. 2006 Dec 1; 27(12):1297–1301. 10.1080/09593332708618747
  • Purchas D, Sutherland K. editors, Handbook of filter media. (UK, Oxford: Elsevier Advanced Technology). 2002 Oct 28.
  • Fernández HT, Rico IR, De La Prida JJ, et al. Dimethyl sulfide biofiltration using immobilized hyphomicrobium VS and thiobacillus thioparus TK-m in sugarcane bagasse. Environ Technol. 2013 Jan 1; 34(2):257–262. 10.1080/09593330.2012.692713
  • Vela-Aparicio D, Forero DF, Hernández MA, et al. Simultaneous biofiltration of H2S and NH3 using compost mixtures from lignocellulosic waste and chicken manure as packing material. Environ Sci Pollut Res. 2021 May;28(19):24721–24730.
  • Kumar M, Giri BS, Kim KH, et al. Performance of a biofilter with compost and activated carbon based packing material for gas-phase toluene removal under extremely high loading rates. Bioresour Technol. 2019 Aug 1; 285:121317.10.1016/j.biortech.2019.121317
  • Sawalha H, Maghalseh M, Qutaina J, et al. Removal of hydrogen sulfide from biogas using activated carbon synthesized from different locally available biomass wastes-a case study from palestine. Bioengineered. 2020 Jan 1; 11(1):607–618. 10.1080/21655979.2020.1768736
  • Weckhuysen B, Vriens L, Verachtert H. The effect of nutrient supplementation on the biofiltration removal of butanal in contaminated air. Appl Microbiol Biotechnol. 1993 Jun;39(3):395–399.
  • Agu IV, Ibiene AA, Okpokwasili GC. Effect of micronutrients and macronutrients on the biodegradation of phenol in biological treatment of refinery effluent. Microbiol Res J Int. 2017;18(3):1–2.
  • Dorado AD, Lafuente FJ, Gabriel D, et al. A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ Technol. 2010 Feb 1; 31(2):193–204. 10.1080/09593330903426687
  • Kim NJ, Hirai M, Shoda M. Comparison of organic and inorganic packing materials in the removal of ammonia gas in biofilters. J Hazard Mater. 2000 Feb 1; 72(1):77–90. 10.1016/S0304-3894(99)00160-0
  • Anet B, Couriol C, Lendormi T, et al. Characterization and selection of packing materials for biofiltration of rendering odourous emissions. Water Air Soil Pollut. 2013 Jul;224(7):1–3.
  • Han MF, Wang C, Yang NY, et al. Performance enhancement of a biofilter with pH buffering and filter bed supporting material in removal of chlorobenzene. Chemosphere. 2020 Jul 1; 251:126358.10.1016/j.chemosphere.2020.126358
  • Barzgar S, Hettiaratchi JP, Pearse L, et al. Inhibitory effects of acidic pH and confounding effects of moisture content on methane biofiltration. Bioresour Technol. 2017 Dec 1; 245:633–640.10.1016/j.biortech.2017.08.188
  • Zhang Y, Liss SN, Allen DG. Effect of methanol on pH and stability of inorganic biofilters treating dimethyl sulfide. Environ Sci Technol. 2007 May 15; 41(10):3752–3757. 10.1021/es062756p
  • Liu J, Sun J, Lu C, et al. Bioaerosol emissions of pilot-scale low-pH and neutral-pH biofilters treating odors from landfill leachate: characteristics and impact factors. Waste Manage. 2021 Jun 1; 128:64–72.10.1016/j.wasman.2021.04.040
  • Liu J, Sun J, Lu C, et al. Performance and substance transformation of low-pH and neutral-pH biofilters treating complex gases containing hydrogen sulfide, ammonia, acetic acid, and toluene. Environ Sci Pollut Res. 2021 Feb;13:1–2.
  • Khoramfar S, Jones KD, Ghobadi J, et al. Effect of surfactants at natural and acidic pH on microbial activity and biodegradation of mixture of benzene and o-xylene. Chemosphere. 2020 Dec 1; 260:127471.10.1016/j.chemosphere.2020.127471
  • Moll DM, Summers RS, Fonseca AC, et al. Impact of temperature on drinking water biofilter performance and microbial community structure. Environ Sci Technol. 1999 Jul 15; 33(14):2377–2382. 10.1021/es9900757
  • Darlington AB, Dat JF, Dixon MA. The biofiltration of indoor air: air flux and temperature influences the removal of toluene, ethylbenzene, and xylene. Environ Sci Technol. 2001 Jan 1; 35(1):240–246. 10.1021/es0010507
  • Lim KH, Park SW, Lee EJ. Effect of temperature on the performance of a biofilter inoculated with pseudomonas putida to treat waste-air containing ethanol. Korean J Chem Eng. 2005;22(6):922–926.
  • Halle C, Huck PM, Peldszus S. Emerging contaminant removal by biofiltration: temperature, concentration, and EBCT impacts. J Am Water Works Assoc. 2015 Jul;107(7):E364–79.
  • Li Y, Wang Y, Wan D, et al. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: performance and microbial community structure. Bioresour Technol. 2020 Mar 1; 300:122682.10.1016/j.biortech.2019.122682
  • Elyasi S, Fallah N, Bonakdarpour B, et al. The effect of temperature and styrene concentration on biogas production and degradation characteristics during anaerobic removal of styrene from wastewater. Bioresour Technol. 2021 Sep 20; 342:125988.10.1016/j.biortech.2021.125988
  • Badilla DB, Gostomski PA, Dalida ML. Influence of water content on biofiltration performance. ASEAN J Chem Eng. 2010;10(2):31–39.
  • Bohn HL, Bohn KH. Moisture in biofilters. Environ Prog. 1999 Sep;18(3):156–161.
  • Chang J, Mei J, Jia W, et al. Treatment of heavily polluted river water by tidal-operated biofilters with organic/inorganic media: evaluation of performance and bacterial community. Bioresour Technol. 2019 May 1; 279:34–42.10.1016/j.biortech.2019.01.060
  • Kiedrzyńska E, Urbaniak M, Kiedrzyński M, et al. The use of a hybrid sequential biofiltration system for the improvement of nutrient removal and PCB control in municipal wastewater. Sci Rep. 2017 Jul 14; 7(1):1–4. 10.1038/s41598-017-05555-y
  • Morales M, Hernández S, Cornabé T, et al. Effect of drying on biofilter performance: modeling and experimental approach. Environ Sci Technol. 2003 Mar 1; 37(5):985–992. 10.1021/es025970w
  • Ryu HW, Cho KS, Chung DJ. Relationships between biomass, pressure drop, and performance in a polyurethane biofilter. Bioresour Technol. 2010 Mar 1; 101(6):1745–1751. 10.1016/j.biortech.2009.10.018
  • Morgan-Sagastume JM, Noyola A, Revah S, et al. Changes in physical properties of a compost biofilter treating hydrogen sulfide. J Air Waste Manag Assoc. 2003 Aug 1; 53(8):1011–1021. 10.1080/10473289.2003.10466249
  • Malakar S, Saha PD, Baskaran D, et al. Microbial biofilter for toluene removal: performance evaluation, transient operation and theoretical prediction of elimination capacity. Sustainable Environ Res. 2018 May 1; 28(3):121–127. 10.1016/j.serj.2017.12.001
  • Yang Z, Li J, Liu J, et al. Evaluation of a pilot-scale bio-trickling filter as a VOCs control technology for the chemical fibre wastewater treatment plant. J Environ Manage. 2019 Sep 15; 246:71–76.10.1016/j.jenvman.2019.05.102
  • Serial GA, Smith FL, Suidan MT, et al. Evaluation of trickle bed biofilter media for toluene removal. J Air Waste Manag Assoc. 1995 Oct 1; 45(10):801–810. 10.1080/10473289.1995.10467410
  • Cheng Y, He H, Yang C, et al. Performance and biofilm characteristics of a gas biofilter for n-hexane removal at various operational conditions. RSC Adv. 2015;5(60):48954–48960.
  • Hu J, Zhang L, Chen J, et al. Performance and microbial analysis of a biotrickling filter inoculated by a specific bacteria consortium for removal of a simulated mixture of pharmaceutical volatile organic compounds. Chem Eng J. 2016 Nov 15; 304:757–765.10.1016/j.cej.2016.06.078
  • Xie L, Zhu J, Hu J, et al. Study of the mass transfer–biodegradation kinetics in a pilot-scale biotrickling filter for the removal of H2S. Ind Eng Chem Res. 2020 Apr 7; 59(17):8383–8392. 10.1021/acs.iecr.0c00672
  • Huan C, Fang J, Tong X, et al. Simultaneous elimination of H2S and NH3 in a biotrickling filter packed with polyhedral spheres and best efficiency in compost deodorization. J Clean Prod. 2021 Feb 15;284:124708.10.1016/j.jclepro.2020.124708.
  • Gandu B, Palanivel S, Juntupally S, et al. Removal of NH3 and H2S from odor causing tannery emissions using biological filters: impact of operational strategy on the performance of a pilot-scale bio-filter. J Environ SciHealth A. 2021 Mar;15:1.
  • Bezirgiannidis A, Plesia-Efstathopoulou A, Ntougias S, et al. Combined chemically enhanced primary sedimentation and biofiltration process for low cost municipal wastewater treatment. J Environ SciHealth A. 2019 Oct 15; 54(12):1227–1232. 10.1080/10934529.2019.1633842
  • Khabiri B, Ferdowsi M, Buelna G, et al. Bioelimination of low methane concentrations emitted from wastewater treatment plants: a review. Crit Rev Biotechnol. 2021 Jul;14:1–8.
  • Mohseni M, Allen DG. Transient performance of biofilters treating mixtures of hydrophilic and hydrophobic volatile organic compounds. J Air Waste Manag Assoc. 1999 Dec 1; 49(12):1434–1441. 10.1080/10473289.1999.10463980
  • Kong Z, Farhana L, Fulthorpe RR, et al. Treatment of volatile organic compounds in a biotrickling filter under thermophilic conditions. Environ Sci Technol. 2001 Nov 1; 35(21):4347–4352. 10.1021/es010639i
  • https://solutionpharmacy.in/rotary-drum-filter/ [ accessible 29 October 2021].
  • Yang C, Suidan MT, Zhu X, et al. Removal of a volatile organic compound in a hybrid rotating drum biofilter. J Environ Eng. 2004 Mar;130(3):282–291.
  • Padhi SK, Gokhale S. Treatment of gaseous volatile organic compounds using a rotating biological filter. Bioresour Technol. 2017 Nov 1; 244:270–280.10.1016/j.biortech.2017.07.112
  • Priya VS, Philip L. Treatment of volatile organic compounds in pharmaceutical wastewater using submerged aerated biological filter. Chem Eng J. 2015 Apr 15; 266:309–319.10.1016/j.cej.2014.12.048
  • http://www.watermaxim.co.uk/submerged-aerated-filters.php [accessible 29 October 2021].
  • Pawęska K, Bawiec A, Pulikowski K. Wastewater treatment in submerged aerated biofilter under condition of high ammonium concentration. Ecol Chem Eng. 2017 Jul 1; 24(3):431–442. 10.1515/eces-2017-0029
  • García-Peña I, Ortiz I, Hernandez S, et al. Biofiltration of BTEX by the fungus paecilomyces variotii. Int Biodeterior Biodegrad. 2008 Dec 1; 62(4):442–447. 10.1016/j.ibiod.2008.03.012
  • Wongbunmak A, Panthongkham Y, Suphantharika M, et al. A fixed-film bioscrubber of microbacterium esteraromaticum SBS1-7 for toluene/styrene biodegradation. J Hazard Mater. 2021 Jun;1:126287.
  • Benedek T, Szentgyörgyi F, Gergócs V, et al. Potential of variovorax paradoxus isolate BFB1_13 for bioremediation of BTEX contaminated sites. AMB Express. 2021 Dec;11(1):1–7.
  • Chandran GV Degradation of 2-Ethyl-1-Hexanol in a Biotrickling Filter in the presence of Fungi and Bacillus Subtilis (Doctoral dissertation, University of Cincinnati).
  • Zhao M, Hu L, Dai L, et al. Bamboo charcoal powder-based polyurethane as packing material in biotrickling filter for simultaneous removal of n-hexane and dichloromethane. SSRN Electronic Journal. 2021. Available at SSRN 3949243. DOI: 10.2139/ssrn.3949243.
  • Botros MM, Aly Hassan A, Sorial GA. Role of fungal biomass in N-hexane biofiltration. Advances in Microbiology. 2017;07(10):673–688.
  • Sun D, Zhang K, Duan C, et al. Potential application of an Aspergillus strain in a pilot biofilter for benzene biodegradation. Sci Rep. 2017 Apr 6; 7(1):1–9. 10.1038/s41598-016-0028-x
  • Zhanga Y, Denga W, Qina Y, et al. Research on simultaneous removal of cyclohexane and methyl acetate in biotrickling filters. InProceedings of the 2nd International Conference of Recent Trends in Environmental Science and Engineering, Niagara Falls, Canada, https://doi.org/10.11159/rtese18 10-12 June 2018 2018 (Vol. 107).
  • Sun S, Jia T, Chen K, et al. Simultaneous removal of hydrogen sulfide and volatile organic sulfur compounds in off-gas mixture from a wastewater treatment plant using a two-stage bio-trickling filter system. Front Environ Sci Eng. 2019 Sep;13(4):1–3.
  • Araya B, Diaz C, Martín JS, et al. Biodegradation of 2, 5‐dimethylpyrazine in gas and liquid phase by the fungus fusarium solani. J Chem Technol Biot. 2021 Sep 24. 10.1002/jctb.6903
  • García‐Peña EI, Hernández S, Favela‐Torres E, et al. Toluene biofiltration by the fungus scedosporium apiospermum TB1. Biotechnol Bioeng. 2001;76(1):61–69.
  • Li Y, Tabassum S, Zhang Z. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater. J Environ Sci. 2016 Sep 1; 47:23–33.10.1016/j.jes.2016.03.012
  • Gu Q, Chen M, Zhang J, et al. Genomic analysis and stability evaluation of the phenol-degrading bacterium Acinetobacter sp. dw-1 during water treatment. Front Microbiol. 2021 Jul 13; 12 ;687511.
  • Shokoohi R, Movahedian H, Dargahi A. Evaluation of the efficiency of a biofilter system’s phenol removal from wastewater.Avicenna J Environ Health Eng. 2016 [2016];3(1): DOI:10.17795/ajehe-7449.
  • Li Y, Tabassum S, Chu C, et al. Inhibitory effect of high phenol concentration in treating coal gasification wastewater in anaerobic biofilter. J Environ Sci. 2018 Feb 1; 64:207–215.10.1016/j.jes.2017.06.001
  • Zhang Y, Liu J, Xing H, et al. Performance and fungal diversity of bio-trickling filters packed with composite media of polydimethylsiloxane and foam ceramics for hydrophobic VOC removal. Chemosphere. 2020 Oct 1; 256:127093.10.1016/j.chemosphere.2020.127093
  • Dobslaw D, Woiski C, Winkler F, et al. Prevention of clogging in a polyurethane foam packed biotrickling filter treating emissions of 2-butoxyethanol. J Clean Prod. 2018 Nov 1; 200:609–621.10.1016/j.jclepro.2018.07.248
  • Cheng Y, Li X, Liu H, et al. Effect of presence of hydrophilic volatile organic compounds on removal of hydrophobic n-hexane in biotrickling filters. Chemosphere. 2020 Aug 1; 252:126490.10.1016/j.chemosphere.2020.126490
  • Liao D, Li E, Li J, et al. Removal of benzene, toluene, xylene and styrene by biotrickling filters and identification of their interactions. PloS one. 2018 Jan 2; 13(1):e0189927. 10.1371/journal.pone.0189927
  • Chen CY, Wang GH, Tsai CT, et al. Removal of toluene vapor in the absence and presence of a quorum-sensing molecule in a biotrickling filter and microbial composition shift. J Environ SciHealth A. 2020 Feb 23; 55(3):256–265. 10.1080/10934529.2019.1684120
  • Lin CW, Tsai SL, Lai CY, et al. Biodegradation kinetics and microbial dynamics of toluene removal in a two-stage cell-biochar-filled biotrickling filter. J Clean Prod. 2019 Nov 20; 238:117940.10.1016/j.jclepro.2019.117940
  • Dewidar AA, Sorial GA. Effect of rhamnolipids on the fungal elimination of toluene vapor in a biotrickling filter under stressed operational conditions. Environ Res. 2022 Mar 1; 204:111973.10.1016/j.envres.2021.111973
  • Zhang Y, Liu J, Qin Y, et al. Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter. J Hazard Mater. 2019 Mar 5; 365:642–649.10.1016/j.jhazmat.2018.11.062
  • Sun Z, Ding C, Xi J, et al. Enhancing biofilm formation in biofilters for benzene, toluene, ethylbenzene, and xylene removal by modifying the packing material surface. Bioresour Technol. 2020 Jan 1; 296:122335.10.1016/j.biortech.2019.122335
  • Sookpunya P, Suwannacho S, Suadee W. Kinetics of ethyl benzene degradation in biofilter using isolated bacteria from petrochemical wastewater treatment plant. Thai Environ Eng J. 2019 Aug 30;33(2):27–32.
  • Sun Y, Xue S, Li L, et al. Sulfur dioxide and o-xylene co-treatment in biofilter: performance, bacterial populations and bioaerosols emissions. J Environ Sci. 2018 Jul 1; 69:41–51.10.1016/j.jes.2017.03.039
  • Shang B, Zhou T, Tao X, et al. Simultaneous removal of ammonia and volatile organic compounds from composting of dead pigs and manure using pilot-scale biofilter. J Air Waste Manag Assoc. 2021 Mar 4; 71(3):378–391. 10.1080/10962247.2020.1841040
  • Moe WM, Qi B. Biofilter treatment of volatile organic compound emissions from reformulated paint: complex mixtures, intermittent operation, and startup. J Air Waste Manag Assoc. 2005 Jul 1; 55(7):950–960. 10.1080/10473289.2005.10464687
  • Aizpuru A, Malhautier L, Roux JC, et al. Biofiltration of a mixture of volatile organic emissions. J Air Waste Manag Assoc. 2001 Dec 1; 51(12):1662–1670. 10.1080/10473289.2001.10464388
  • Ryu HW, Cho KS, Lee TH. Reduction of ammonia and volatile organic compounds from food waste-composting facilities using a novel anti-clogging biofilter system. Bioresour Technol. 2011 Apr 1; 102(7):4654–4660. 10.1016/j.biortech.2011.01.021
  • Huang WH, Wang Z, Choudhary G, et al. Characterization of microbial species in a regenerative bio-filter system for volatile organic compound removal. HVAC&R Res. 2012 Feb 1;18(1–2):169–178.
  • Saroso H, Rulianah S. Performance of aerated fixed film biofilter (AF2B) Reactor for treating hospital wastewater. Nat Environ Pollut Technol. 2018 Mar 1. 17(1):209–213.
  • Yoon H, Song MJ, Yoon S. Design and feasibility analysis of a self-sustaining biofiltration system for removal of low concentration N2O emitted from wastewater treatment plants. Environ Sci Technol. 2017 Sep 19; 51(18):10736–10745. 10.1021/acs.est.7b02750
  • Liang Z, Wang J, Zhang Y, et al. Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. J Clean Prod. 2020 Apr 20; 253:120019.10.1016/j.jclepro.2020.120019
  • Li W, Zhu X, Hou Y, et al. The treatment of high-concentration garlic processing wastewater by UASB-SBR. Environ Technol. 2021 Oct;14:1–5.
  • Sar T, Ozturk M, Taherzadeh MJ, et al. New insights on protein recovery from olive oil mill wastewater through bioconversion with edible filamentous fungi. Processes. 2020 Oct;8(10):1210.
  • Souza Filho PF, Zamani A, Taherzadeh MJ. Edible protein production by filamentous fungi using starch plant wastewater. Waste Biomass Valorization. 2019 Sep;10(9):2487–2496.
  • Parchami M, Wainaina S, Mahboubi A, et al. MBR-assisted VFAs production from excess sewage sludge and food waste slurry for sustainable wastewater treatment. Appl Sci. 2020 Jan;10(8):2921.
  • Groenestijn JW. Bioscrubbers. In: Edited By: Kennes C and Veiga MC, Bioreactors for waste gas treatment 2001. Dordrecht: Springer. p. 133–162.
  • Hansen NG, Rindel K. Bioscrubber for treating waste gases from waste water treatment plants. In: Edited By: Kennes C and Veiga MC, Bioreactors for waste gas treatment 2001. Dordrecht: Springer. p. 285–298.
  • Le Cloirec P, Humeau P. Bioscrubbers. Air Pollut Prev Control Bioreactors Bioenergy 139–153 . 2013 Apr 19.
  • Li L, Zhang J, Lin J, et al. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics. World J Microbiol Biotechnol. 2015 Oct;31(10):1501–1515.
  • https://crbwater.com/solutions/bioscrubber/ [ accessible 13 January 2022].
  • Malhautier L, Lalanne F, Fanlo JL. Bioscrubbing as a treatment for a complex mixture of volatile organic compounds: influence of the absorption column characteristics on performance. Can J Civil Eng. 2009 Dec;36(12):1926–1934.
  • Le Cloirec P, Humeau P. Industrial bioscrubbers for the food and waste industries. Air Pollut Prev Control Bioreactors Bioenergy. 2013 Apr;19:497–511.
  • Bennicelli R, Stępniewska Z, Banach A, et al. The ability of azolla caroliniana to remove heavy metals (Hg (II), Cr (III), Cr (VI)) from municipal waste water. Chemosphere. 2004 Apr 1;55(1):141–146.
  • Tel-Or E, Sela M, Ravid S. Biofiltration of heavy metals by the aquatic fern azolla. InModern Agriculture and the Environment. Springer, Dordrecht. 1997;431–442.
  • Rima J, Aoun E, Hanna K. Use of beetroot fibers to clean water contaminated with heavy metals, to soften hard water, and to desalinate seawater. Toxicol Environ Chem. 2004 Mar 1; 86(2):105–116. 10.1080/0277224042000221113
  • Tiwari S, Dixit S, Verma N. An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environ Monit Assess. 2007 Jun;129(1–3):253–256.
  • Kumari M, Tripathi BD. Effect of Phragmites australis and Typha latifolia on biofiltration of heavy metals from secondary treated effluent. Int J Environ Sci Technol. 2015 Mar 1; 12(3):1029–1038. 10.1007/s13762-013-0475-x
  • Blecken GT, Marsalek J, Viklander M. Laboratory study of stormwater biofiltration in low temperatures: total and dissolved metal removals and fates. Water Air Soil Pollut. 2011 Jul;219(1–4):303–317.
  • Feng W, Hatt BE, McCarthy DT, et al. Biofilters for stormwater harvesting: understanding the treatment performance of key metals that pose a risk for water use. Environ Sci Technol. 2012 May 1; 46(9):5100–5108. 10.1021/es203396f
  • Fang H, Jamali B, Deletic A, et al. Machine learning approaches for predicting the performance of stormwater biofilters in heavy metal removal and risk mitigation. Water Res. 2021 May 23; 200:117273.10.1016/j.watres.2021.117273
  • https://watersensitivecities.org.au/wp-content/uploads/2016/06/AGSBS-A2-How-does-stormwater-biofiltration-work.pdf [accessible 13 January 2022].
  • Li X, Dong S, Yao Y, et al. Inoculation of bacteria for the bioremediation of heavy metals contaminated soil by agrocybe aegerita. RSC Adv. 2016;6(70):65816–65824.
  • Kang CH, Kwon YJ, So JS. Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng. 2016 Apr 1; 89:64–69.10.1016/j.ecoleng.2016.01.023
  • Dhankhar R, Hooda A. Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol. 2011 Apr 1; 32(5):467–491. 10.1080/09593330.2011.572922
  • Fijoł N, Abdelhamid HN, Pillai B, et al. 3D-printed monolithic biofilters based on a polylactic acid (PLA)–hydroxyapatite (HAp) composite for heavy metal removal from an aqueous medium. RSC Adv. 2021;11(51):32408–32418.
  • Kiran MG, Pakshirajan K, Das G. Heavy metal removal from multicomponent system by sulfate reducing bacteria: mechanism and cell surface characterization. J Hazard Mater. 2017 Feb 15; 324:62–70.10.1016/j.jhazmat.2015.12.042
  • Loukidou MX, Matis KA, Zouboulis AI, et al. Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res. 2003 Nov 1; 37(18):4544–4552. 10.1016/S0043-1354(03)00415-9
  • Misra CS, Appukuttan D, Kantamreddi VS, et al. Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Bioengineered. 2012 Jan 1; 3(1):44–48. 10.4161/bbug.3.1.18878
  • Choi J, Kotay SM, Goel R. Bacteriophage-based biocontrol of biological sludge bulking in wastewater. Bioengineered Bugs. 2011 Jul 1; 2(4):214–217. 10.4161/bbug.2.4.16211
  • Khairnar K, Chandekar R, Nair A, et al. Novel application of bacteriophage for controlling foaming in wastewater treatment plant-an eco-friendly approach. Bioengineered. 2016 Jan 2; 7(1):46–49. 10.1080/21655979.2015.1134066
  • Giri BS, Gun S, Pandey S, et al. Reusability of brilliant green dye contaminated wastewater using corncob biochar and brevibacillus parabrevis: hybrid treatment and kinetic studies. Bioengineered. 2020 Jan 1; 11(1):743–758. 10.1080/21655979.2020.1788353
  • Rafida AI, Sallis PJ Removal of heavy metals from rainwater in vertical flow biofilters conditioned with sulphate reducing bacteria (SRB). InXII International Rainwater Catchment Systems Conference 2005. Newcastle University.
  • Khan MJ, Rai A, Ahirwar A, et al. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered. 2021 Oct 30(just-accepted); 12(2):9531–9549. 10.1080/21655979.2021.1996748
  • Rezooqi AM, Atiyah AH, Mugheir HS Bioaccumulation of (Ni, Cd, Pb, Cr, Hg, and Co) from Al-rustomia wastewater using A. filiculoids. In Journal of Physics: Conference Series 2021, IOP Publishing. Mar 2021 1;1853(1): 012019.
  • Mohamed S, Mahrous A, Elshahat R, et al. Accumulation of iron, zinc and lead by azolla pinnata and lemna minor and activity in contaminated water. Egyptian J Chem. 2021 Sep 1;64(9):5017–5030.
  • Faheem M, Shabbir S, Zhao J, et al. Enhanced adsorptive bioremediation of heavy metals (Cd2+, Cr6+, Pb2+) by methane-oxidizing epipelon. Microorganisms. 2020 Apr;8(4):505.
  • Torres SG, Hernández SC, Jiménez LD. Bioadsorption of Cr (VI) in aqueous solutions by pseudomonas koreensis immobilized in alginate beads. Inter J Environ Impacts. 2019 Aug 13;2(3):229–239.
  • Mukherjee S, Thakur AK, Goswami R, et al. Efficacy of agricultural waste derived biochar for arsenic removal: tackling water quality in the Indo-Gangetic plain. J Environ Manage. 2021 Mar 1; 281:111814.10.1016/j.jenvman.2020.111814
  • Puglla EP, Guaya D, Tituana C, et al. Biochar from agricultural by-products for the removal of lead and cadmium from drinking water. Water. 2020 Oct;12(10):2933.
  • Kumari M, Tripathi BD. Efficiency of phragmites australis and typha latifolia for heavy metal removal from wastewater. Ecotoxicol Environ Saf. 2015 Feb 1; 112:80–86.10.1016/j.ecoenv.2014.10.034
  • Das SK, Ghosh GK, Avasthe R. Conversion of crop, weed and tree biomass into biochar for heavy metal removal and wastewater treatment. Biomass Convers Biorefin. 2021 Feb;11:1–4.
  • Loutseti S, Danielidis DB, Economou-Amilli A, et al. The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes. Bioresour Technol. 2009 Apr 1; 100(7):2099–2105. 10.1016/j.biortech.2008.11.019
  • Ahmad Z, Gao B, Mosa A, et al. Removal of Cu (II), Cd (II) and Pb (II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J Clean Prod. 2018 Apr 10; 180:437–449.10.1016/j.jclepro.2018.01.133
  • Rima J, Ghauch A, Ghaouch M, et al. Cleaning of water contaminated by heavy metals using beetroot fibers as biofilter. Toxicol Environ Chem. 2000 Mar 1; 75(1–2):89–97. 10.1080/02772240009358895
  • Vijayaraghavan K, Rangabhashiyam S, Ashokkumar T, et al. Mono-and multi-component biosorption of lead (II), cadmium (II), copper (II) and nickel (II) ions onto coco-peat biomass. Sep Sci Technol. 2016 Nov 21; 51(17):2725–2733. 10.1080/01496395.2016.1212889
  • He HJ, Xiang ZH, Chen XJ, et al. Biosorption of Cd (II) from synthetic wastewater using dry biofilms from biotrickling filters. Int J Environ Sci Technol. 2018 Jul;15(7):1491–1500.
  • Mosa A, El-Ghamry A, Trüby P, et al. Chemo-mechanical modification of cottonwood for Pb2+ removal from aqueous solutions: sorption mechanisms and potential application as biofilter in drip-irrigation. Chemosphere. 2016 Oct 1; 161:1–9.10.1016/j.chemosphere.2016.06.101
  • She H, Zhou H, Li L, et al. Construction of a two-dimensional composite derived from TiO2 and SnS2 for enhanced photocatalytic reduction of CO2 into CH4. ACS Sustain Chem Eng. 2018 Nov 28; 7(1):650–659. 10.1021/acssuschemeng.8b04250
  • Farhan SN, Ismael MH, Mahmood WA, et al. Biosorption of copper and lead ions using chara algae. Pakistan J Eng Appl Sci. 2021 Aug 17.
  • Al-Quraishi DO, Al-Mayaly IK. Biosorption of cadmium, lead and nickel in their aqueous solution by Nitzschia palea and Navicula incerta. J Eng Appl Sci. 2019;14(5):9114–9120.
  • Moawad MN, El-Sayed AA, El-Naggar NA. Biosorption of cadmium and nickel ions using marine macrophyte, cymodocea nodosa. Chem Ecol. 2020 May 27; 36(5):458–474. 10.1080/02757540.2020.1752199
  • Kocaoba S, Arısoy M. Biosorption of cadmium (II) and lead (II) from aqueous solutions using Pleurotus ostreatus immobilized on bentonite. Sep Sci Technol. 2018 Jul 24; 53(11):1703–1710. 10.1080/01496395.2018.1442477
  • Gutha Y, Munagapati VS, Naushad M, et al. Removal of Ni (II) from aqueous solution by lycopersicum esculentum (tomato) leaf powder as a low-cost biosorbent. Desalin Water Treat. 2015 Apr 3; 54(1):200–208. 10.1080/19443994.2014.880160
  • Zhu N, Zhang J, Tang J, et al. Arsenic removal by periphytic biofilm and its application combined with biochar. Bioresour Technol. 2018 Jan 1; 248:49–55.10.1016/j.biortech.2017.07.026
  • Ghosh S, Mondal A, Gangopadhyay S, et al. Cadmium bioaccumulation in Lamellidens marginalis and human health risk assessment: a case study in India. Hum Ecol Risk Assess. 2020 Mar 15; 26(3):713–725. 10.1080/10807039.2018.1530588
  • Cai YA, Li D, Liang Y, et al. Operational parameters required for the start-up process of a biofilter to remove Fe, Mn, and NH3-N from low-temperature groundwater. Desalin Water Treat. 2016 Feb 13; 57(8):3588–3596. 10.1080/19443994.2014.986203
  • Majumder S, Raghuvanshi S, Gupta S. Application of a hybrid biofilter column for the removal of Cr (VI) from aqueous solution using an indigenous bacterial strain Pseudomonas taiwanensis. Bioremed J. 2016 Jan 2; 20(1):10–23. 10.1080/10889868.2015.1113923
  • Veselý T, Tlustoš P, Száková J. The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead. Int J Phytoremediation. 2011 Oct 1; 13(9):859–872. 10.1080/15226514.2011.560214
  • Yang L, Li X, Chu Z, et al. Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater. Bioresour Technol. 2014 Mar 1;156:384–388.
  • Crognale S, Casentini B, Amalfitano S, et al. Biological As (III) oxidation in biofilters by using native groundwater microorganisms. SciTotal Environ. 2019 Feb 15; 651:93–102.10.1016/j.scitotenv.2018.09.176
  • Blecken GT, Zinger Y, Deletić A, et al. Impact of a submerged zone and a carbon source on heavy metal removal in stormwater biofilters. Ecol Eng. 2009 May 1; 35(5):769–778. 10.1016/j.ecoleng.2008.12.009
  • Gallardo-Rodríguez JJ, Rios-Rivera AC, Von Bennevitz MR. Living biomass supported on a natural-fiber biofilter for lead removal. J Environ Manage. 2019 Feb 1; 231:825–832.10.1016/j.jenvman.2018.11.004
  • Upadhyay AR, Tripathi BD. Principle and process of biofiltration of Cd, Cr, Co, Ni & Pb from tropical opencast coalmine effluent. Water Air Soil Pollut. 2007 Mar;180(1):213–223.
  • Ali GA, Abbas MN. atomic spectroscopy technique employed to detect the heavy metals from iraqi waterbodies using natural bio-filter (Eichhornia crassipes) thera dejla as a case study. Syst Rev Pharm. 2020 Sep;11(9):264–271.
  • Ouad Papadia P, Barozzi F, Migoni D, et al. Aquatic mosses as adaptable bio-filters for heavy metal removal from contaminated water. Int J Mol Sci. 2020 Jan;21(13):4769.
  • Duprey A, Chansavang V, Frémion F, et al. “nico buster”: engineering E. coli for fast and efficient capture of cobalt and nickel. J Biol Eng. 2014 Dec;8(1):1.
  • Azab Y, Ibrahim W, Hussien M. Development of algal biofilters for the treatment of heavy metal pollution from industrial wastewater. Catrina Int J Environ Sci. 2008 May 1;3(2):49–57.
  • Salman A, Ahmaed AS. Removal of lead from aqueous solutions using the biofilm formed by leuconostoc mesentroides and lactobacillus casei. Plant Arch. 2019;19(2):1751–1755.
  • Carreño Sayago UF. Design, scaling, and development of biofilters with e crassipes for treatment of water contaminated with Cr (VI). Water. 2021 Jan;13(9):1317.
  • Emahi I, Sakyi PO, Bruce-Vanderpuije P, et al. Effectiveness of raw versus activated coconut shells for removing arsenic and mercury from water. Environ Nat Resour Res. 2019;9(3):127–134.
  • Kamde K, Dahake R, Pandey RA, et al. Integrated bio-oxidation and adsorptive filtration reactor for removal of arsenic from wastewater. Environ Technol. 2019 Apr 29; 40(10):1337–1348. 10.1080/09593330.2017.1422547
  • Pathania D, Sharma G, Naushad M, et al. A biopolymer-based hybrid cation exchanger pectin cerium (IV) iodate: synthesis, characterization, and analytical applications. Desalin Water Treat. 2016 Jan 2;57(1):468–475.
  • Baharuddin NH, Sulaiman NM, Aroua MK, et al. Starch as novel water soluble biopolymer in removal mixtures heavy metal ions via polymer enhanced ultrafiltration. InAIP Conf Proc. 2019 Jul 23;2124(1):030012. AIP Publishing LLC.
  • Periyasamy S, Naushad M, Viswanathan N. Hydrothermal fabrication of triazine-functionalized covalent organic polymer enfolded alginate biocomposite beads for Cr (vi) removal from water. Environ Sci Water Res Technol. 2020;6(3):851–863.
  • Lee S, Lingamdinne LP, Yang JK, et al. Biopolymer mixture-entrapped modified graphene oxide for sustainable treatment of heavy metal contaminated real surface water. Journal of Water Process Engineering. 2022 Apr 1; 46:102631.10.1016/j.jwpe.2022.102631
  • Moula A, Ellafi A, Borgi MA, et al. Enhanced bioremediation of heavy metals from phosphate processing wastewater using the indigenous bacterium serratia rubidaea NCTC12971. Geomicrobiol J. 2021 Nov 2; 38(10):914–923. 10.1080/01490451.2021.1979696
  • Bello AO, Tawabini BS, Khalil AB, et al. Phytoremediation of cadmium-, lead-and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol Eng. 2018 Sep 1; 120:126–133.10.1016/j.ecoleng.2018.05.035
  • Bordoloi S, Basumatary B. A study on degradation of heavy metals in crude oil-contaminated soil using cyperus rotundus. In: Edited By: Ansari AA, Gill SS, Gill R, Lanza GR and Newman L, In Phytoremediation 2016. Cham: Springer. p. 53–60.
  • Augustynowicz J, Tokarz K, Baran A, et al. Phytoremediation of water polluted by thallium, cadmium, zinc, and lead with the use of macrophyte callitriche cophocarpa. Arch Environ Contam Toxicol. 2014 May;66(4):572–581.
  • Nazir MI, Idrees I, Idrees P, et al. Potential of water hyacinth (Eichhornia crassipes L.) for phytoremediation of heavy metals from waste water. Biol Clin Sci Res J. 2020 Dec 12;2020(1). 10.54112/bcsrj.v2020i1.6
  • Fuwad A, Ryu H, Malmstadt N, et al. Biomimetic membranes as potential tools for water purification: preceding and future avenues. Desalination. 2019 May 15; 458:97–115.10.1016/j.desal.2019.02.003
  • Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev. 2019;48(2):463–487.
  • Agre P. The aquaporin water channels. Proc Am Thorac Soc. 2006 Mar;3(1):5–13.
  • Beratto-Ramos A, Dagnino-Leone J, Martínez-Oyanedel J, et al. Fabrication and filtration performance of aquaporin biomimetic membranes for water treatment. Sep Purif Rev. 2021 Jul;17:1–8.
  • Kumar M, Grzelakowski M, Zilles J, et al. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z. Proc Nat Acad Sci. 2007 Dec 26; 104(52):20719–20724. 10.1073/pnas.0708762104
  • Verkman AS, Mitra AK. Structure and function of aquaporin water channels. Am J Physiol Renal Physiol. 2000 Jan 1; 278(1):F13–28. 10.1152/ajprenal.2000.278.1.F13
  • Zhong PS, Chung TS, Jeyaseelan K, et al. Aquaporin-embedded biomimetic membranes for nanofiltration. J Membr Sci. 2012 Jul 15; 407-408:27–33.10.1016/j.memsci.2012.03.033
  • Fuwad A, Ryu H, Lee JH, et al. An electrokinetic approach to fabricating aquaporin biomimetic membranes for water purification. Desalination. 2019 Feb 15; 452:9–16.10.1016/j.desal.2018.10.010
  • Zhao Y, Li X, Wei J, et al. Optimization of aquaporin loading for performance enhancement of aquaporin-based biomimetic thin-film composite membranes. Membranes (Basel). 2022 Jan;12(1):32.
  • https://aquaporin.com/ [accessible 13 January 2022].
  • Peydayesh M, Mezzenga R. Protein nanofibrils for next generation sustainable water purification. Nat Commun. 2021 May 31; 12(1):1–7. 10.1038/s41467-021-23388-2
  • Yang F, Yang Q, Chen M, et al. Toxic metal ion sequestration by amyloid-mediated fast coacervation. Cell Rep Phy Sci. 2021 Mar 24; 2(3):100379. 10.1016/j.xcrp.2021.100379
  • Peydayesh M, Bolisetty S, Mohammadi T, et al. Assessing the binding performance of amyloid–carbon membranes toward heavy metal ions. Langmuir. 2019 Feb 27; 35(11):4161–4170. 10.1021/acs.langmuir.8b04234
  • Bolisetty S, Reinhold N, Zeder C, et al. Efficient purification of arsenic-contaminated water using amyloid–carbon hybrid membranes. Chem Comm. 2017;53(42):5714–5717.
  • Jung JM, Savin G, Pouzot M, et al. Structure of heat-induced β-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate. Biomacromolecules. 2008 Sep 8; 9(9):2477–2486. 10.1021/bm800502j
  • Bolisetty S, Mezzenga R. Amyloid–carbon hybrid membranes for universal water purification. Nat Nanotechnol. 2016 Apr;11(4):365–371.
  • Jia X, Peydayesh M, Huang Q, et al. Amyloid fibril templated MOF aerogels for water purification. Small. 2021. 18(4), Nov 23:2105502.
  • Anselmo S, Cataldo S, Avola T, et al. Lead (II) ions adsorption onto amyloid particulates: an in depth study. J Colloid Interface Sci. 2022 Mar 15; 610:347–358.10.1016/j.jcis.2021.11.184
  • Shindhal T, Rakholiya P, Varjani S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2021 Jan 1; 12(1):70–87. 10.1080/21655979.2020.1863034
  • Al Aani S, Bonny T, Hasan SW, et al. Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination? Desalination. 2019 May 15; 458:84–96.10.1016/j.desal.2019.02.005
  • Zheng X, Nguyen H. A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm. Chemosphere. 2022 Jan 1; 287:132251.10.1016/j.chemosphere.2021.132251
  • Alam G, Ihsanullah I, Naushad M, et al. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: recent advances and prospects. Chem Eng J. 2022 Jan 1; 427:130011.10.1016/j.cej.2021].130011
  • Faisal AA, Nassir ZS, Naji LA, et al. A sustainable approach to utilize olive pips for the sorption of lead ions: numerical modeling with aid of artificial neural network. Sustainable Chem Pharm. 2020 Mar 1; 15:100220.10.1016/j.scp.2020.100220