4,477
Views
11
CrossRef citations to date
0
Altmetric
Review

Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater

, , ORCID Icon, , , , , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 8115-8134 | Received 27 Jan 2022, Accepted 02 Mar 2022, Published online: 17 Mar 2022

References

  • Shah AV, Singh A, Mohanty SS, et al. Organic solid waste: biorefinery approach as a sustainable strategy in circular bioeconomy. Bioresour Technol. 2022;349:126835.
  • Vyas S, Prajapati P, Shah AV, et al. Municipal solid waste management: dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. Sci Total Environ. 2022a;814:152802.
  • Vyas S, Prajapati P, Shah AV, et al. Opportunities and knowledge gaps in biochemical interventions for mining of resources from solid waste: a special focus on anaerobic digestion. Fuel. 2022b;311:122625.
  • Devda V, Chaudhary K, Varjani S, et al. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered. 2021;12:4697–4718.
  • Do MH, Ngo HH, Guo W, et al. Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review. Sci Total Environ. 2020;712:135612.
  • Varjani SJ, Upasani VN. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad. 2017;120:71–83.
  • Varjani S, Rakholiya P, Ng HY, et al. Microbial degradation of dyes: an overview. Bioresour Technol. 2020a;314:123728.
  • Di Fraia S, Massarotti N, Vanoli L. A novel energy assessment of urban wastewater treatment plants. Energy Convers Manag. 2018;163:304–313.
  • Chattopadhyay I, Banu RJ, Usman TMM, et al. Exploring the role of microbial biofilm for industrial effluents treatment. Bioengineered. 2022;2022250. Available form: https://doi.org/10.1080/21655979.2022.2044250
  • Grobelak A, Grosser A, Kacprzak M, et al., Sewage sludge processing and management in small and medium-sized municipal wastewater treatment plant-new technical solution. 2019;J Environ Manage. 234:90–96.
  • Asongu SA, Agboola MO, Alola AA, et al. The criticality of growth, urbanization, electricity and fossil fuel consumption to environment sustainability in Africa. Sci Total Environ. 2020;712:136376.
  • Patel GB, Rakholiya P, Shindhal T, et al. Lipolytic nocardiopsis for reduction of pollution load in textile industry effluent and swiss model for structural study of lipase. Bioresour Technol. 2021;341:125673.
  • Varjani SJ. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2017;223:277–286.
  • Thangamani R, Vidhya L, Varjani S. Electrochemical technologies for wastewater treatment and resource reclamation. In: Microbe mediated remediation of environmental contaminants. Elsevier; 2021. p. 381–389.
  • Liu Y, Deng YY, Zhang Q, et al. Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies. Sci Total Environ. 2021;757:143901.
  • Varjani S, Rakholiya P, Shindhal T, et al. Trends in dye industry effluent treatment and recovery of value added products. J Water Process Eng. 2021;39:101734.
  • Kataki S, Chatterjee S, Vairale MG, et al., Constructed wetland, an eco-technology for wastewater treatment: a review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). 2021;J Environ Manage. 283:111986.
  • Ditzig J, Liu H, Logan BE. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrogen Energy. 2007;32:2296–2304.
  • Janani R, Baskar G, Sivakumar K, et al. Advancements in heavy metals removal from effluents employing nano-adsorbents: way towards cleaner production. Environ Res. 2022;203:111815.
  • Mohan SV, Sravan JS, Butti SK, et al. Microbial Electrochemical Technology. In: Microbial electrochemical technology: emerging and sustainable platform. Elsevier, 2019. 3–18.
  • Ahmad A, Chowdhary P, Khan N, et al. Effect of sewage sludge biochar on the soil nutrient, microbial abundance, and plant biomass: a sustainable approach towards mitigation of solid waste. Chemosphere. 2022;287:132112.
  • Jain A, He Z. “NEW” resource recovery from wastewater using bioelectrochemical systems: moving forward with functions. 2018;Front Environ Sci Eng. 12:1–13.
  • Adesra A, Srivastava VK, Varjani S. Valorization of dairy wastes: integrative approaches for value added products. Indian J Microbiol. 61:270–278. 2021;https://doi.org/10.1007/s12088-021-00943-5
  • Huang Q, Liu Y, Dhar BR. A critical review of microbial electrolysis cells coupled with anaerobic digester for enhanced biomethane recovery from high-strength feedstocks. Crit Rev Environ Sci Technol. 2020c: 1–40
  • Kadier A, Jain P, Lai B, et al. Biorefinery perspectives of microbial electrolysis cells (MECs) for hydrogen and valuable chemicals production through wastewater treatment. Biofuel Res J. 2020a;7:1128–1142.
  • Rousseau R, Etcheverry L, Roubaud E, et al. Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint. Appl Energy. 2020b;257. Doi: 10.1016/j.apenergy.2019.113938
  • Jiang Y, Liang P, Zhang C, et al. Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells. Appl Energy. 2016;165:670–675.
  • Kadier A, Jiang Y, Lai B, et al. Biohydrogen production in microbial electrolysis cells from renewable resources. (CRC Press, Taylor & Francis), 2019.10.1201/9781351228138-12.
  • Kadier A, Simayi Y, Abdeshahian P, et al. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Eng J. 2016b;55:427–443.
  • Escapa A, Mateos R, Martínez EJ, et al. Microbial electrolysis cells: an emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renewable Sustainable Energy Rev. 2016;55:942–956.
  • Waqas M, Rehan M, Aburiazaiza AS, et al. Wastewater biorefinery based on the microbial electrolysis cell: opportunities and challenges. Elsevier B.V. 2018; 10.1016/B978-0-444-64017-8.00017-8
  • Cui W, Liu G, Zeng C, et al. Improved hydrogen production in the single-chamber microbial electrolysis cell with inhibition of methanogenesis underalkaline conditions. RSC Adv. 2019;9:30207–30215.
  • Lu L, Hou D, Wang X, et al. Active H2 harvesting prevents methanogenesis in microbial electrolysis cells. Environ Sci Technol Lett. 2016;3:286–290.
  • Lu C, Gu P, He P, et al. Characteristics of hydrogenotrophic denitrification in a combined system of gas-permeable membrane and a biofilm reactor. J Hazard Mater. 2009;168:1581–1589.
  • Wang L, Trujillo S, Liu H. Selective inhibition of methanogenesis by acetylene in single chamber microbial electrolysis cells. Bioresour Technol. 2019;274:557–560.
  • Segundo-Aguilar A, González-Gutiérrez LV, Payá VC, et al., Energy and economic advantages of simultaneous hydrogen and biogas production in microbial electrolysis cells as a function of the applied voltage and biomass content. 2021;Sustain. Energy Fuels. 5:2003–2017.
  • Kadier A, Parkhey P, Adekunle A, et al. Microbial electrochemical technologies. In Sonia M. Tiquia-Arashiro: Microbial electrolysis cell (mec): a versatile technology for hydrogen, value-added chemicals production and wastewater treatment. CRC Press, Taylor & Francis, 2020c. 113–127.
  • Zhen G, Lu X, Kumar G, et al. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: current situation, challenges and future perspectives. Prog. Energy Combust. Sci. 2017;63:119–145.
  • Zou S, Qin M, Moreau Y, et al. Nutrient-energy-water recovery from synthetic sidestream centrate using a microbial electrolysis cell - forward osmosis hybrid system. J Clean Prod. 2017;154:16–25.
  • Varanasi JL, Veerubhotla R, Pandit S, et al. Biohydrogen production using microbial electrolysis cell: recent advances and future prospects. Microb. Electrochem. Technol. 2019: 843–869
  • San-Martín MI, Sotres A, Alonso RM, et al. Assessing anodic microbial populations and membrane ageing in a pilot microbial electrolysis cell. Int J Hydrogen Energy. 2019;44:17304–17315.
  • Miller A, Singh L, Wang L, et al. Linking internal resistance with design and operation decisions in microbial electrolysis cells. Environ Int. 2019;126:611–618.
  • Kadier A, Kalil MS, Chandrasekhar K, et al. Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): strategies for inhibiting growth of methanogens. Bioelectrochemistry. 2018;119:211–219.
  • Leicester D, Amezaga J, Heidrich E. Is bioelectrochemical energy production from wastewater a reality? identifying and standardising the progress made in scaling up microbial electrolysis cells. Renewable Sustainable Energy Rev. 2020;133:110279.
  • Sadhukhan J, Lloyd JR, Scott K, et al. A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. Renewable Sustainable Energy Rev. 2016;56:116–132.
  • Feng Q, Song Y-C, Yoo K, et al., Performance of upflow anaerobic bioelectrochemical reactor compared to the sludge blanket reactor for acidic distillery wastewater treatment. 2016;J Korean Soc Environ Eng. 38:279–290.
  • Aryal N, Kvist T, Ammam F, et al. An overview of microbial biogas enrichment. Bioresour Technol. 2018;264:359–369.
  • Cerrillo M, Viñas M, Bonmatí A. Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell. Bioresour Technol. 2016;216:362–372.
  • Cerrillo M, Viñas M, Bonmatí A. Unravelling the active microbial community in a thermophilic anaerobic digester-microbial electrolysis cell coupled system under different conditions. Water Res. 2017;110:192–201.
  • Zhi Z, Pan Y, Lu X, et al. Electrically regulating co-fermentation of sewage sludge and food waste towards promoting biomethane production and mass reduction. Bioresour Technol. 2019;279:218–227.
  • Yuan H, He Z. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: a review. Bioresour Technol. 2015;195:202–209.
  • Katuri KP, Werner CM, Jimenez-Sandoval RJ, et al. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environ Sci Technol. 2014;48:12833–12841.
  • Babu ML, Subhash GV, Sarma PN, et al. Bio-electrolytic conversion of acidogenic effluents to biohydrogen: an integration strategy for higher substrate conversion and product recovery. Bioresour Technol. 2013b;133:322–331.
  • Babu ML, Sarma PN, Mohan SV. Microbial electrolysis of synthetic acids for biohydrogen production: influence of biocatalyst pretreatment and pH with the function of applied potential. J Microb Biochem Technol S. 2013a;6:2.
  • Chandrasekhar K, Mohan SV. Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: function of electron flux to enhance acidogenic biohydrogen production. Int J Hydrogen Energy. 2014;39:11411–11422.
  • Modestra JA, Babu ML, Mohan SV. Electro-fermentation of real-field acidogenic spent wash effluents for additional biohydrogen production with simultaneous treatment in a microbial electrolysis cell. Sep Purif Technol. 2015;150:308–315.
  • Chen Y, Chen M, Shen N, et al. H2 production by the thermoelectric microconverter coupled with microbial electrolysis cell. Int J Hydrogen Energy. 2016;41:22760–22768.
  • Wang A, Sun D, Cao G, et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol. 2011;102:4137–4143.
  • Varjani SJ, Upasani VN. Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. 2019;J Envirov Manage. 245:358–366.
  • Wang XT, Zhao L, Chen C, et al. Microbial electrolysis cells (MEC) accelerated methane production from the enhanced hydrolysis and acidogenesis of raw waste activated sludge. Chem Eng J. 2021b;413:127472.
  • Varanasi JL, Veerubhotla R, Pandit S, et al. Biohydrogen production using microbial electrolysis cell: recent advances and future prospects. Elsevier B.V. 2018a; DOI:10.1016/B978-0-444-64052-9.00035-2
  • Zhang Y, Angelidaki I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res. 2014c;56:11–25.
  • Zhang Y, Angelidaki I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res. 2014a;56:11–25.
  • Zhang Y, Angelidaki I. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell. Biotechnol Bioeng. 2015;112:1478–1482.
  • Zhang Y, Angelidaki I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res. 2014b;56:11–25.
  • Kim Y, Logan BE. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proc Natl Acad Sci. 2011;108:16176–16181.
  • Harirchi S, Wainaina S, Sar T, et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (vfas): a review. Bioengineered. 2022;13(3):6521–6557. https://doi.org/10.1080/21655979.2022.2035986
  • Feng H, Huang L, Wang M, et al. An effective method for hydrogen production in a single-chamber microbial electrolysis by negative pressure control. Int J Hydrogen Energy. 2018;43:17556–17561.
  • Huang J, Feng H, Huang L, et al. Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure. Waste Manag. 2020a;103:61–66.
  • Al Afif R, Amon T. Mesophilic anaerobic co-digestion of cow manure with three-phase olive mill solid waste. energy sources, part a recover. Util. Environ. Eff. 2019;41:1800–1808.
  • Velásquez F, Espitia J, Mendieta O, et al., Non-centrifugal cane sugar processing: a review on recent advances and the influence of process variables on qualities attributes of final products. 2019;J Food Eng. 255:32–40.
  • Yun Y-M, Lee M-K, Im S-W, et al. Biohydrogen production from food waste: current status, limitations, and future perspectives. Bioresour Technol. 2018;248:79–87.
  • Wang XT, Zhao L, Chen C, et al. Microbial electrolysis cells (MEC) accelerated methane production from the enhanced hydrolysis and acidogenesis of raw waste activated sludge. Chem Eng J. 2021a;413:127472.
  • Liu C, Sun D, Zhao Z, et al. Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer. Bioresour Technol. 2019;291:121877.
  • Yu Z, Leng X, Zhao S, et al. A review on the applications of microbial electrolysis cells in anaerobic digestion. Bioresour Technol. 2018;255:340–348.
  • Zakaria BS, Dhar BR. Progress towards catalyzing electro-methanogenesis in anaerobic digestion process: fundamentals, process optimization, design and scale-up considerations. Bioresour Technol. 2019;289:121738.
  • Bulushev DA, Ross JRH. Towards sustainable production of formic acid. ChemSusChem. 2018;11:821–836.
  • Okoroafor T, Haile S, Velasquez-Orta S. Life cycle assessment of microbial electrosynthesis for commercial product generation. 2021;J Hazardous, Toxic, Radioact Waste. 25:4020062.
  • Saavalainen P, Turpeinen E, Omodara L, et al. Developing and testing a tool for sustainability assessment in an early process design phase–Case study of formic acid production by conventional and carbon dioxide-based routes. J Clean Prod. 2017;168:1636–1651.
  • Srikanth S, Alvarez‐Gallego Y, Vanbroekhoven K, et al. Enzymatic electrosynthesis of formic acid through carbon dioxide reduction in a bioelectrochemical system: effect of immobilization and carbonic anhydrase addition. ChemPhysChem. 2017;18:3174–3181.
  • You S, Wang J, Ren N, et al. Sustainable conversion of glucose into hydrogen peroxide in a solid polymer electrolyte microbial fuel cell. ChemSusChem Chem. Sustain. Energy Mater. 2010;3:334–338.
  • Kadier A, Kalil MS, Abdeshahian P, et al. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renewable Sustainable Energy Rev. 2016a;61:501–525.
  • Ki D, Popat SC, Rittmann BE, et al. H2O2 production in microbial electrochemical cells fed with primary sludge. Environ Sci Technol. 2017;51:6139–6145.
  • Cheng D, Ngo HH, Guo W, et al. Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics. Bioresour Technol. 2020;311:123588.
  • Hu K, Xu L, Chen W, et al. Degradation of organics extracted from dewatered sludge by alkaline pretreatment in microbial electrolysis cell. Environ Sci Pollut Res. 2018;25:8715–8724.
  • Khan MJ, Singh N, Mishra S, et al. Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: updates, challenges and innovations. Chemosphere. 2022;288:132589. Doi.
  • Liu X, Ding J, Ren N, et al. The detoxification and degradation of benzothiazole from the wastewater in microbial electrolysis cells. Int J Environ Res Public Health. 2016;13:1259.
  • Miran W, Nawaz M, Jang J, et al. Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system. Water Res. 2017;117:198–206.
  • Varjani SJ, Rana DP, Jain AK, et al. Synergistic exsitu biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad. 2015;103:116–124.
  • Wang A-J, Cui D, Cheng H-Y, et al. A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction. J Hazard Mater. 2012;199-200:401–409.
  • Hua T, Li S, Li F, et al. Microbial electrolysis cell as an emerging versatile technology: a review on its potential application, advance and challenge. J Chem Technol Biotechnol. 2019;94:1697–1711.
  • Xu X, Shao J, Li M, et al. Reductive Transformation of p-chloronitrobenzene in the upflow anaerobic sludge blanket reactor coupled with microbial electrolysis cell: performance and microbial community. Bioresour Technol. 2016;218:1037–1045.
  • Coma M, Puig S, Pous N, et al. Biocatalysed sulphate removal in a BES cathode. Bioresour Technol. 2013;130:218–223.
  • Li Y, Zhao Z, Yang Y, et al. Bioelectrochemical enhancement of organic matter mineralization and sulfate reduction during acidogenesis. J Chem Technol Biotechnol. 2018;93:675–682.
  • Vinayak V, Khan MJ, Varjani S, et al. Microbial fuel cells for remediation of environmental pollutants and value addition: special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells. J Biotechnol. 2021;338:5–19.
  • Dong ZS, Zhao Y, Fan L, et al. Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell. Int J Electrochem Sci. 2017;12:10553–10566.
  • Wang K, Cao Z, Chang J, et al. Promoted bioelectrocatalytic activity of microbial electrolysis cell (MEC) in sulfate removal through the synergy between neutral red and graphite felt. Chem Eng J. 2017;327:183–192.
  • Cecconet D, Devecseri M, Callegari A, et al. Effects of process operating conditions on the autotrophic denitrification of nitrate-contaminated groundwater using bioelectrochemical systems. Sci Total Environ. 2018;613-614:663–671.
  • Tugaoen HO, Herckes P, Hristovski K, et al. Influence of ultraviolet wavelengths on kinetics and selectivity for N-gases during TiO2 photocatalytic reduction of nitrate. Appl Catal B Environ. 2018;220:597–606.
  • Hussain A, Manuel M, Tartakovsky B. A comparison of simultaneous organic carbon and nitrogen removal in microbial fuel cells and microbial electrolysis cells. 2016;J Environ Manage. 173:23–33.
  • Kelly PT, He Z. Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol. 2014;153:351–360.
  • Kuntke P, Sleutels T, Arredondo MR, et al. (Bio) electrochemical ammonia recovery: progress and perspectives. Appl Microbiol Biotechnol. 2018;102:3865–3878.
  • Zhan G, Zhang L, Li D, et al. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell. Bioresour Technol. 2012;116:271–277.
  • Qin B, Luo H, Liu G, et al. Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresour Technol. 2012;121:458–461.
  • Giwa A. Comparative cradle-to-grave life cycle assessment of biogas production from marine algae and cattle manure biorefineries. Bioresour Technol. 2017;244:1470–1479.
  • Ghosh P, Sengupta S, Singh L, et al. Life cycle assessment of waste-to-bioenergy processes: a review. Bioreactors. 2020;105–122. doi:10.1016/B978-0-12-821264-6.00008-5.
  • Savla N, Pandit S, Verma JP, et al., Techno-economical evaluation and life cycle assessment of microbial electrochemical systems: a review. 2021;Curr. Res. Green Sustain. Chem. 4:100111.
  • Fang C, Zhou C, Gu C, et al., A proposal for the theoretical analysis of the interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations. 2017;J Geogr Sci. 27:1431–1449.
  • Liu N, Liu C, Xia Y, et al. Examining the coordination between urbanization and eco-environment using coupling and spatial analyses: a case study in China. Ecol Indic. 2018;93:1163–1175.
  • Sheng P, Zhai M, Zhang Y, et al. The effects of urbanization on household wastewater emissions in China: efficient-and inefficient-emissions. Environ Pollut. 2020;267:115350.
  • Shindhal T, Rakholiya P, Varjani S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2020;12(1):70–87.
  • Li K, Fang L, He L. How population and energy price affect China’s environmental pollution? Energy Policy. 2019;129:386–396.
  • Mason K, Duggan J, Howley E. Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks. Energy. 2018;155:705–720.
  • Mohanty SS, Koul Y, Varjani S, et al. A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact. 2021;20:1–13.
  • Ye Y, Ngo HH, Guo W, et al. A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresour Technol. 2018;268:749–758.
  • Kirchherr J, Reike D, Hekkert M. Conceptualizing the circular economy: an analysis of 114 definitions. Resour Conserv Recycl. 2017;127:221–232.
  • Korhonen J, Honkasalo A, Seppälä J. Circular economy: the concept and its limitations. 2018;Ecol. Econ. 143:37–46.
  • Mishra B, Varjani S, Agarwal DC, et al., Engineering biocatalytic material for the remediation of pollutants: a comprehensive review. Env Technol Innov. 20, 101063 ( 2020. 2020;:.
  • Prieto-Sandoval V, Jaca C, Ormazabal M. Towards a consensus on the circular economy. J Clean Prod. 2018;179:605–615.
  • Linder M. Ripe for disruption: reimagining the role of green chemistry in a circular economy. 2017;Green Chem. Lett. Rev. 10:428–435.
  • Kristensen HS, Mosgaard MA. A review of micro level indicators for a circular economy–moving away from the three dimensions of sustainability? J Clean Prod. 2020;243:118531.
  • Moraga G, Huysveld S, Mathieux F, et al. Circular economy indicators: what do they measure? Resour Conserv Recycl. 2019;146:452–461.
  • Morseletto P. Targets for a circular economy. Resour Conserv Recycl. 2020;153:104553.
  • Sharma P, Gaur VK, Gupta S, et al. Trends in mitigation of industrial waste: global health hazards, environmental implications and waste derived economy for environmental sustainability. Sci Total Environ. 2022;811:152357.
  • Varjani SJ, Upasani VN. Bioaugmentation of pseudomonas aeruginosa NCIM 5514 - A novel oily waste degrader for treatment of petroleum hydrocarbons. Bioresour Technol. 2021;319:124240.
  • Chiranjeevi P, Dahiya S, Kumar N. Waste derived bioeconomy in India: a perspective. N Biotechnol. 2018;40:60–69.
  • Iyyappan J, Bharathiraja B, Varjani S, et al. Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: media engineering and kinetic analysis. Bioresour Technol. 2022;346:126405.
  • Kostas ET, Adams JMM, Ruiz HA, et al. Macroalgal biorefinery concepts for the circular bioeconomy: a review on biotechnological developments and future perspectives. Renewable Sustainable Energy Rev. 2021;151:111553.
  • Katuri KP, Ali M, Saikaly PE. The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects. Curr Opin Biotechnol. 2019;57:101–110.
  • Shah AV, Srivastava VK, Mohanty SS, et al. Municipal solid waste as a sustainable resource for energy production: state-of-the-art review. J Environ. Chem. Eng. 9:105717. 2021;https://doi.org/10.1016/j.jece.2021.105717
  • Mishra B, Varjani S, Iragavarapu GP, et al. Microbial fingerprinting of potential biodegrading organisms. Curr. Pollut. Rep. 2019; 1–17. DOI:10.1007/s40726-019-00116-5).
  • Varjani SJ, Pandey A, Upasani VN. Oilfield waste treatment using novel hydrocarbon utilizing bacterial consortium - A microcosm approach. Sci Total Environ. 2020b;745:141043.
  • Rousseau R, Etcheverry L, Roubaud E, et al. Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint. Appl Energy. 2020a;257:113938.