7,989
Views
8
CrossRef citations to date
0
Altmetric
Review

Genetic modifications associated with sustainability aspects for sustainable developments

, , ORCID Icon, ORCID Icon, ORCID Icon &
Pages 9509-9521 | Received 29 Jan 2022, Accepted 25 Mar 2022, Published online: 07 Apr 2022

References

  • Akumo DN, Riedel H, Semtanska I. Social and economic issues–genetically modified food. In: Food Industry. IntechOpen. 2013;221–228 .
  • Kumar AN, Sarkar OP, Chandrasekhar K, et al. upgrading the value of anaerobic fermentation via renewable chemicals production: a sustainable integration for circular bioeconomy. SciTotal Environ. 2022;806:150312.
  • Cochrane, G., International Nucleotide Sequence Database Collaboration, Karsch-Mizrachi, I., International Nucleotide Sequence Database CollaborationThe international nucleotide sequence database collaboration, Nakamura, Y. and International Nucleotide Sequence Database Collaboration, 2010. International Nucleotide Sequence Database Collaboration, Karsch-Mizrachi, I., International Nucleotide Sequence Database CollaborationThe international nucleotide sequence database collaboration. Nucleic acids research, 39(suppl_1), pp.D15–D18.
  • Tyczewska A, Woźniak E, Gracz J, et al. Towards food security: current state and future prospects of agrobiotechnology. Trends Biotechnol. 2018;36(12):1219–1229.
  • U.S. EPA. Inventory of U.S. Greenhouse Gas Emissions. EPA-EMISSIONS. Environmental System Science Data Infrastructure for a Virtual Ecosystem . and Sinks. Washington DC and Sinks: United States Environmental Protection Agency; 2018
  • Devda V, Chaudhary K, Varjani S, et al. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered. 2021;12(1):4697–4718.
  • Varjani S, Lee DJ, Zhang ZQ. Valorizing agricultural biomass for sustainable development: biological engineering aspects. Bioengineered. 2020;11(1):522–523.
  • Varjani S, Shah AV, Vyas S, et al. Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: a systematic review. Chemosphere. 2021;282:130954.
  • Aguilar A, Twardowski T, Wohlgemuth R. Bioeconomy for sustainable development. Biotechnol J. 2019;14(8):1800638.
  • James C. Global status of commercialized biotech/GM crops, 2011. Vol. 44. Ithaca NY: isaaa; 2011.
  • James, Clive, and Anatole F. Krattiger. ”Global review of the field testing and commercialization of transgenic plants: 1986 to 1995.” Isaaa Briefs 1 (1996)
  • Brookes G, Barfoot P. Environmental impacts of genetically modified (GM) crop use 1996–2018: impacts on pesticide use and carbon emissions. GM Crops Food. 2020;11(4):215–241.
  • Devos Y, Maeseele P, Reheul D, et al. Ethics in the societal debate on genetically modified organisms: a (re) quest for sense and sensibility. J Agricult Environ Ethics. 2008;21(1):29–61.
  • Prakash D, Verma S, Bhatia R, et al. Risks and precautions of genetically modified organisms. Int Sch Res Notices. 2011;211:1–14 .
  • Brookes G, Barfoot P. Global impact of biotech crops: environmental effects, 1996–2010. GM Crops Food. 2012;3(2):129–137.
  • Maga EA, Murray JD. Welfare applications of genetically engineered animals for use in agriculture. J Anim Sci. 2010;88(4):1588–1591.
  • McCabe H, Butler D. European Union tightens GMO regulations. Nature. 1999;400(6739):7.
  • Whitman DB. Genetically modified foods: harmful or helpful? CSA Disc guid. 2000;1–13.
  • McHughen A, Smyth S. US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars. Plant Biotechnol J. 2008;6(1):2–12.
  • Khan MJ, Rai A, Ahirwar A, et al. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered. 2021;12(2):9531–9549.
  • Manu MK, Li D, Liwen L, et al. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresour Technol. 2021;334:125032.
  • Demont M, Dillen K, Mathijs E, et al. GM crops in Europe: how much value and for whom? EuroChoices. 2007;6(3):46–53.
  • Wikandari R, Manikharda, Baldermann S, et al. Application of cell culture technology and genetic engineering for production of future foods and crop improvement to strengthen food security. Bioengineered. 2021;12(2):11305–11330.
  • Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Hakimi, S.M., Mo, H. and Habben, J.E., 2017. ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant biotechnology journal, 15(2), pp.207–216.
  • Bellini J. This gene-edited calf could transform Brazil’s beef industry. Available at the Wall Street Journal Website on October. 2018;1.
  • Yin X, Biswal AK, Dionora J, et al. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep. 2017;36(5):745–757.
  • .fYu H, Li H, Li Q, et al. Targeted gene disruption in Pacific oyster based on CRISPR/Cas9 ribonucleoprotein complexes. Mar Biotechnol. 2019;21(3):301–309.
  • Li X, Zhou W, Ren Y, et al. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J genet genom Yi chuan xue bao. 2017;44(3):175–178.
  • Zhang A, Liu Y, Wang F, et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed. 2019;39(3):1–10.
  • Shao, X., Wu, S., Dou, T., Zhu, H., Hu, C., Huo, H., He, W., Deng, G., Sheng, O., Bi, F. and Gao, H., 2020. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene‐modified semi‐dwarf banana. Plant Biotechnology Journal, 18(1), p.17.
  • Karavolias NG, Horner W, Abugu MN, et al. Application of gene editing for climate change in agriculture. Front Sustainable Food Syst. 2021;296.
  • Paparini A, Romano-Spica V. Public health issues related with the consumption of food obtained from genetically modified organisms. Biotechnol Annu Rev. 2004;10(1):85–122.
  • Ma JK, Drake PM, Christou P. The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet. 2003;4(10):794–805.
  • Poppy GM. Geneflow from GM plants–towards a more quantitative risk assessment. Trends Biotechnol. 2004;22(9):436–438.
  • Cunningham FJ, Goh NS, Demirer GS, et al. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 2018;36(9):882–897.
  • Ibitoye DO, Akin-Idowu PE. Marker-assisted-selection (MAS): a fast track to increase genetic gain in horticultural crop breeding. Afr J Biotechnol. 2010;9(52):8889–8895.
  • James C, Krattiger AF. Global review of the field testing and commercialization of transgenic plants: 1986 to 1995. ISAAA Brief. 1996;1.
  • Rommens CM. All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci. 2004;9(9):457–464.
  • Lakshmi S, Suvedha K, Sruthi R, et al. Hexavalent chromium sequestration from electronic waste by biomass of Aspergillus carbonarius. Bioengineered. 2020;11(1):708–717.
  • Vyas S, Prajapati P, Shah AV, et al. Municipal solid waste management: dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. SciTotal Environ. 2022;814:152802.
  • Vyas S, Prajapati P, Shah AV, et al. Opportunities and knowledge gaps in biochemical interventions for mining of resources from solid waste: a special focus on anaerobic digestion. Fuel. 2022;311:122625.
  • Singh OV, Ghai S, Paul D, et al. Genetically modified crops: success, safety assessment, and public concern. Appl Microbiol Biotechnol. 2006;71(5):598–607.
  • Darbani B, Eimanifar A, Stewart CN Jr, et al. Methods to produce marker‐free transgenic plants. Biotechnol J Healthcare Nutrit Technol. 2007;2(1):83–90.
  • Zhao Y, Qian Q, Wang HZ, et al. Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA. Vitro Cellu Develop Biol Plant. 2007;43(4):328–334.
  • Adeyeye SAO, Idowu-Adebayo F. Genetically modified and biofortified crops and food security in developing countries: a review. Nutrition & Food Science; 2019.
  • Garcia-Casal MN, Pena-Rosas JP, Giyose B, et al. Staple crops biofortified with increased vitamins and minerals: considerations for a public health strategy. Ann N Y Acad Sci. 2017;1390(1):3–13.
  • Stein AJ, Nestel P, Meenakshi JV, et al. Plant breeding to control zinc deficiency in India: how cost-effective is biofortification? Public Health Nutr. 2007;10(5):492–501.
  • Kumar N, Galli M, Ordon J, et al. Further analysis of barley MORC 1 using a highly efficient RNA‐guided Cas9 gene‐editing system. Plant Biotechnol J. 2018;16(11):1892–1903.
  • Fister AS, Landherr L, Maximova SN, et al. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci. 2018;9:268.
  • Makhotenko AV, Khromov AV, Snigir EA, et al. Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing In Doklady Biochemistry and Biophysics. Pleiades Publishing; 2019 January Vol. 484 No. 1. 88–91.
  • Manu MK, Wang C, Li D, et al. Biodegradation kinetics of ammonium enriched food waste digestate compost with biochar amendment. Bioresour Technol. 2021;341:125871.
  • Jiang W, Zhou H, Bi H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41(20):e188–e188.
  • Zhou J, Peng Z, Long J, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 2015;82(4):632–643.
  • Xu, Z., Xu, X., Gong, Q., Z., Li, ., Wang, S., Yang, Y., Ma, W., Liu, L., Zhu, B. and Zou, L., 2019. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Molecular plant, 12(11), pp.1434–1446.
  • Oliva R, Ji C, Atienza-Grande G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol. 2019;37(11):1344–1350.
  • Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32(9):947–951.
  • Liu X, Wang Y, Guo W, et al. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun. 2013;4(1):1–11.
  • Liu X, Wang Y, Tian Y, et al. Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc R Soc B. 2014;281(1780):20133368.
  • Ortigosa Urbieta A, Giménez-Ibáñez S, Leonhardt N, et al. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnology Journal. 2019;17(3):665–673.
  • Sharma P, Gujjala LKS, Varjani S, et al. Emerging microalgae-based technologies in biorefinery and risk assessment issues: bioeconomy for sustainable development. SciTotal Environ. 2022;152417:813.
  • Tripathi JN, Ntui VO, Ron M, et al. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol. 2019;2(1):1–11.
  • Fonseca C, Planchon S, Renaut J, et al. Characterization of maize allergens—MON810 vs. its non-transgenic counterpart. J Proteomics. 2012;75(7):2027–2037.
  • Bull SE, Seung D, Chanez C, et al. Accelerated ex situ breeding of GBSS-and PTST1-edited cassava for modified starch. Sci Adv. 2018;4(9):eaat6086.
  • Cochrane G, Karsch-Mizrachi I, Nakamura Y. International nucleotide sequence database collaboration, Karsch-mizrachi, i., international nucleotide sequence database collaboration, Nakamura, y. and international nucleotide sequence database collaboration, 2010. The international nucleotide sequence database collaboration. Nucleic Acids Res. 2011;39(suppl_1):D15–D18.
  • Shukla VK, Doyon Y, Miller JC, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459(7245):437–441.
  • Liang Z, Zhang K, Chen K, et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genome. 2014;41(2):63–68.
  • Wen S, Liu H, Li X, et al. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol. 2018;97(1):177–185.
  • Andersson M, Turesson H, Nicolia A, et al. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 2017;36(1):117–128.
  • Shah AV, Srivastava VK, Mohanty SS, et al. Municipal solid waste as a sustainable resource for energy production: state-of-the-art review. J Environ Chem Eng. 2021;9(4):105717.
  • Song B, Manu MK, Li D, et al. Food waste digestate composting: feedstock optimization with sawdust and mature compost. Bioresour Technol. 2021;341:125759.
  • Barrows G, Sexton S, Zilberman D. Agricultural biotechnology: the promise and prospects of genetically modified crops. J Econ Perspect. 2014;28(1):99–120.
  • Barrows G, Sexton S, Zilberman D. The impact of agricultural biotechnology on supply and land-use. Environ Develop Econ. 2014;19(6):676–703.
  • Tang L, Mao B, Li Y, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep. 2017;7(1):1–12.
  • Dong OX, Yu S, Jain R, et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat Commun. 2020;11(1):1–10.
  • Sánchez‐León S, Gil‐Humanes J, Ozuna CV, et al. Low‐gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J. 2018;16(4):902–910.
  • Kaur N, Alok A, Kumar P, et al. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab Eng. 2020;59:76–86.
  • Okuzaki A, Ogawa T, Koizuka C, et al. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem. 2018;131:63–69.
  • Jiang WZ, Henry IM, Lynagh PG, et al. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J. 2017;15(5):648–657.
  • Ray DK, Mueller ND, West PC, et al. Yield trends are insufficient to double global crop production by 2050. PloS one. 2013;8(6):e66428.
  • Woźniak E, Tyczewska A, Twardowski T. Bioeconomy development factors in the European Union and Poland. N Biotechnol. 2021;60:2–8.
  • Mahaffey H, Taheripour F, Tyner WE. Evaluating the economic and environmental impacts of a global GMO ban. 2016;333–2016–14338:1–34.
  • Searchinger T, Heimlich R, Houghton RA, et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319(5867):1238–1240.
  • Shao X, Wu S, Dou T, et al. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene‐modified semi‐dwarf banana. Plant Biotechnol J. 2020;18(1):17.
  • Smyth SJ, Gusta M, Belcher K, et al. Changes in herbicide use after adoption of HR canola in Western Canada. Weed Technol. 2011;25(3):492–500.
  • Bennett AB, Chi-Ham C, Barrows G, et al. Agricultural biotechnology: economics, environment, ethics, and the future. Ann Rev Environ Res. 2013;38(1):249–279.
  • Priefer C, Meyer R. One concept, many opinions: how scientists in Germany think about the concept of bioeconomy. Sustainability. 2019;11(15):4253.
  • Muir WM, Howard RD. Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis. Proc Nat Acad Sci. 1999;96(24):13853–13856.
  • Kundariya N, Mohanty SS, Varjani S, et al. A review on integrated approaches for municipal solid waste for environmental and economical relevance: monitoring tools, technologies, and strategic innovations. Bioresour Technol. 2021;342:125982.
  • Stevens CV. Industrial applications of natural fibres: structure, properties and technical applications. Vol. 10. John Wiley & Sons; 2010.
  • Shindhal T, Rakholiya P, Varjani S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2020;12(1):70–87.
  • El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H. Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front Plant Sci. 2020;11:56.
  • Toda E, Koiso N, Takebayashi A, et al. An efficient DNA-and selectable-marker-free genome-editing system using zygotes in rice. Nat Plants. 2019;5(4):363–368.
  • Liese A, Seelbach K, Wandrey C, eds. Industrial biotransformations. John Wiley & Sons; 2006.
  • Paugh CLJJC. Meeting the challenge: u.S. industry faces the 21st Century. The use of biotechnology industry U.S. Washington DC: Department of Commerce, Office of Technology Policy; 1997.
  • Gavrilescu M, Chisti Y. Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv. 2005;23(7–8):471–499.