11,835
Views
12
CrossRef citations to date
0
Altmetric
Review

An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy

ORCID Icon, ORCID Icon & ORCID Icon
Pages 9521-9547 | Received 18 Feb 2022, Accepted 25 Mar 2022, Published online: 07 Apr 2022

References

  • Grafton RQ, Williams J, Jiang Q. Food and water gaps to 2050: preliminary results from the global food and water system (GFWS) platform. Food Sec. 2015;7(2):209–220.
  • Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture. Proc Nat Acad Sci. 2011;108(50):20260–20264. DOI:10.1073/pnas.1116437108.
  • Olsen RL, Hasan MR. A limited supply of fishmeal: impact on future increases in global aquaculture production. Trends Food SciTechnol. 2012;27(2):120–128.
  • Chen F, Leng Y, Lu Q, et al. The application of microalgae biomass and bio-products as aquafeed for aquaculture. Algal Res. 2021;60:102541.
  • Jannathulla R, Rajaram V, Kalanjiam R, et al. Fishmeal availability in the scenarios of climate change: inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquacult Res. 2019;50(12):3493–3506. DOI:10.1111/are.14324.
  • Zhao S, Lü B, Li R, et al. A preliminary analysis of fishery resource exhaustion in the context of biodiversity decline. Sci China Earth Sci. 2016;59(2):223–235. DOI:10.1007/s11430-015-5193-4.
  • Shen G, Heino M. An overview of marine fisheries management in China. Marine Policy. 2014;44:265–272.
  • Hanachi P, Karbalaei S, Walker TR, et al. Abundance and properties of microplastics found in commercial fish meal and cultured common carp (Cyprinus carpio). Environ Sci Pollut Res. 2019;26(23):23777–23787. DOI:10.1007/s11356-019-05637-6.
  • Marketwatch, Aquaculture Market Size. 2020. https://www.marketwatch.com/ (accesed 27 August 2021). 2020.
  • Sarker PK, Kapuscinski AR, McKuin B, et al. Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Sci Rep. 2020;10(1):19328. DOI:10.1038/s41598-020-75289-x.
  • Sarker PK, Kapuscinski AR, Vandenberg GW, Proulx, E,Sitek AJ, Thomsen L, et al. Towards sustainable and ocean-friendly aquafeeds: evaluating a fish-free feed for rainbow trout (Oncorhynchus mykiss) using three marine microalgae species. Elem Sci Anth. 2020;8(5). DOI:10.1525/elementa.404.
  • Norambuena F, Hermon K, Skrzypczyk V, et al. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic salmon. PLoS One. 2015;10(4):e0124042. DOI:10.1371/journal.pone.0124042.
  • Nagappan S, Das P, AbdulQuadir M, et al. Potential of microalgae as a sustainable feed ingredient for aquaculture. J Biotechnol. 2021;341:1–20.
  • Kusmayadi A, Leong YK, Yen H-W, et al. Microalgae as sustainable food and feed sources for animals and humans – biotechnological and environmental aspects. Chemosphere. 2021;271:129800.
  • Li H, Chen S, Liao K, et al. Microalgae biotechnology as a promising pathway to ecofriendly aquaculture: a state‐of‐the‐art review. J Chem Technol Biot. 2021;96(4):837–852. DOI:10.1002/jctb.6624.
  • Lu Q, Li H, Zou Y, et al. Astaxanthin as a microalgal metabolite for aquaculture: a review on the synthetic mechanisms, production techniques, and practical application. Algal Res. 2021;54:102178.
  • Beal CM, Gerber LN, Sills DL, et al. Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment. Algal Res. 2015;10:266–279.
  • Camacho-Rodríguez J, Macías-Sánchez MD, Cerón-García MC, et al. Microalgae as a potential ingredient for partial fish meal replacement in aquafeeds: nutrient stability under different storage conditions. J Appl Phycol. 2018;30(2):1049–1059. DOI:10.1007/s10811-017-1281-5.
  • Ahmad A, Banat F, Alsafar H, et al. Recent breakthroughs in integrated biomolecular and biotechnological approaches for enhanced lipid and carotenoid production from microalgae. Phytochem Rev. 2022. DOI:10.1007/s11101-022-09804-5.
  • Gominho-Rosa MDC, Rodrigues APO, Mattioni B, et al. Comparison between the omnivorous jundiá catfish (Rhamdia quelen) and Nile tilapia (Oreochromis niloticus) on the utilization of dietary starch sources: digestibility, enzyme activity and starch microstructure. Aquaculture. 2015;435:92–99.
  • Pavithra KG, Kumar PS, Jaikumar V, et al. Microalgae for biofuel production and removal of heavy metals: a review. Environ Chem Lett 18. 2020;1905–1923. DOI:10.1007/s10311-020-01046-1.
  • Nidhina N, Muthukumar S. Antinutritional factors and functionality of protein-rich fractions of industrial guar meal as affected by heat processing. Food Chem. 2015;173:920–926.
  • Ullah Z, Ahmed G, Nisa MU, et al. Standardized ileal amino acid digestibility of commonly used feed ingredients in growing broilers. Asian-Australas J Anim Sci. 2016;29(9):1322. DOI:10.5713/ajas.15.0703.
  • García-Vaquero M, Hayes M. Red and green macroalgae for fish and animal feed and human functional food development. Food Rev Int. 2016;32(1):15–45.
  • Blomqvist J, Pickova J, Tilami SK, et al. Oleaginous yeast as a component in fish feed. Sci Rep. 2018;8(1):1–8. DOI:10.1038/s41598-018-34232-x.
  • Marques A, Dhont J, Sorgeloos P, et al. Evaluation of different yeast cell wall mutants and microalgae strains as feed for gnotobiotically grown brine shrimp Artemia franciscana. J Exp Mar Biol Ecol. 2004;312(1):115–136. DOI:10.1016/j.jembe.2004.06.008.
  • Bosch G, Zhang S, Oonincx DG, Hendriks WH, et al. Protein quality of insects as potential ingredients for dog and cat foods. J Nutr Sci. 2014;3. DOI:10.1017/jns.2014.23.
  • Aladetohun N, Sogbesan O. Utilization of blood meal as a protein ingredient from animal waste product in the diet of Oreochromis niloticus. Int J Fish Aquaculture. 2013;5(9):234–237.
  • Hussain SM, Afzal M, Salim M, Javid A, Khichi TAA, Hussain M, Raza SA, et al. Apparent digestibility of fish meal, blood meal and meat meal for Labeo rohita fingerlings. Journal of Animal and Plant Sciences. 2011;21(4):807–811.
  • Grazziotin A, Pimentel FA, Jong EVD, et al. Poultry feather hydrolysate as a protein source for growing rats. Braz J Vet Res Anim Sci. 2008;45(1):61–67. DOI:10.11606/S1413-95962008000700008.
  • Yu R, Cao H, Huang Y, Peng M, Kajbaf K, Kumar V, Tao Z, Yang G, Wen C, et al. The effects of partial replacement of fishmeal protein by hydrolysed feather meal protein in the diet with high inclusion of plant protein on growth performance, fillet quality and physiological parameters of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture research. 2020;51(2):636–647. DOI:10.1111/are.14411.
  • Draganovic V, van der Goot A, Boom R, Jonkers J, et al. Wheat gluten in extruded fish feed: effects on morphology and on physical and functional properties. Aquaculture Nutr. 2013;19(6):845–859. DOI:10.1111/anu.12029.
  • Sørensen M, Morken T, Kosanovic M, et al. Pea and wheat starch possess different processing characteristics and affect physical quality and viscosity of extruded feed for Atlantic salmon. Aquaculture Nutr. 2011;17(2):e326–e336. DOI:10.1111/j.1365-2095.2010.00767.x.
  • Katiyar R, Arora A. Health promoting functional lipids from microalgae pool: a review. Algal Res. 2020;46:101800.
  • Madeira MS, Cardoso C, Lopes PA, et al. Microalgae as feed ingredients for livestock production and meat quality: a review. Livestock Sci. 2017;205:111–121.
  • Globenewswire, Microalgae-based products market forecast to 2028. https://www.globenewswire.com/ (accesed 27 August 2021). 2021.
  • Hodar A, et al. Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: a review. J Exp Zool India. 2020;23(1):13–21.
  • Rizwan M, Mujtaba G, Memon SA, et al. Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev. 2018;92:394–404.
  • Li K, Liu Q, Fang F, et al. Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour Technol. 2019;291:121934.
  • Arun J, Gopinath KP, SundarRajan P, et al. A conceptual review on microalgae biorefinery through thermochemical and biological pathways: bio-circular approach on carbon capture and wastewater treatment. Bioresour Technol Rep. 2020;11:100477.
  • Nagappan S, Nakkeeran E. Biorefinery: a concept for co-producing biofuel with value-added products. Environ Biotechnol. 2020;2(45):23.
  • Imamoglu E. Simulation design for microalgal protein optimization. Bioengineered. 2015;6(6):342–346.
  • Wan AH, Davies SJ, Soler-Vila A, Fitzgerald R, Johnson MP, et al. Macroalgae as a sustainable aquafeed ingredient. Revi Aquacult. 2019;11(3):458–492.
  • Dragone G, Fernandes BD, Abreu AP, et al. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy. 2011;88(10):3331–3335. DOI:10.1016/j.apenergy.2011.03.012.
  • Draaisma RB, Wijffels RH, (Ellen) Slegers PM, et al. Food commodities from microalgae. Curr Opin Biotechnol. 2013;24(2):169–177. DOI:10.1016/j.copbio.2012.09.012.
  • García-Chavarría M, Lara-Flores M. The use of carotenoid in aquaculture. Res J Fisher Hydrobiol. 2013;8(2):38–49.
  • Michalak I, Chojnacka K. Algae as production systems of bioactive compounds. Eng Life Sci. 2015;15(2):160–176.
  • Carus M, Dammer L. The circular bioeconomy—concepts, opportunities, and limitations. Ind Biotechnol. 2018;14(2):83–91.
  • Koyande AK, Show P-L, Guo R, et al. Bio-processing of algal bio-refinery: a review on current advances and future perspectives. Bioengineered. 2019;10(1):574–592. DOI:10.1080/21655979.2019.1679697.
  • Ahmad A, Bhat AH, Buang A, et al. Biotechnological application of microalgae for integrated palm oil mill effluent (POME) remediation: a review. Int J Environ Sci Technol. 2019;16(3):1763–1788.
  • Lu Q, Li H, Xiao Y, Liu H, et al. A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. Algal Res. 2021;55:102281.
  • Nagappan S, Kumar Verma S. Co-production of biodiesel and alpha-linolenic acid (omega-3 fatty acid) from microalgae, Desmodesmus sp. MCC34. Energy Sources Part A. 2018;40(24):2933–2940.
  • Adarme-Vega TC, Lim DKY, Timmins M, et al. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact. 2012;11(1):1–10. DOI:10.1186/1475-2859-11-96.
  • Prabha SP, Nagappan S, Rathna R, Viveka R, Nakkeeran E, et al. Blue biotechnology: avision for future marine biorefineries. In refining biomass residues for sustainable energy and bioproducts. Elsevier;2020. p. 463–480.
  • Ramaraj R, Tsai DD-W, Chen PH. Detention time study of algal biomass production with natural water medium. Chiang Mai J Sci. 2015;42(3):549–559.
  • Baharuddin N, Aziz NS, Sohif HN, Basiran MN, et al. Marine microalgae flocculation using plant: the case of Nannochloropsis oculata and Moringa oleifera. Pak J Bot. 2016;48(2):831–840.
  • Wan Mohamad Apandi WA, Matias Peralta HM. Removal of nutrients and selected heavy metals in wet market wastewater by using microalgae Scenedesmus sp. in applied mechanics and materials. Vol. 773, Trans Tech Publications, Ltd; 2015. p. 1210–1214.
  • Jais N, Mohamed RMSR, Al-Gheethi AA, et al. The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol Envir. 2017;19(1):37–52. DOI:10.1007/s10098-016-1235-7.
  • Maizatul AY, Radin Mohamed RMS, Al-Gheethi AA, et al. An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater. Int Aqua Res. 2017;9(3):177–193. DOI:10.1007/s40071-017-0168-z.
  • Yarnold J, Karan H, Oey M, et al. Microalgal aquafeeds as part of a circular bioeconomy. Trends Plant Sci. 2019;24(10):959–970. DOI:10.1016/j.tplants.2019.06.005.
  • Ahmed RA, He M, Aftab RA, et al. Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Sci Rep. 2017;7(1):1–10. DOI:10.1038/s41598-017-07540-x.
  • Gomes D. Extraction and characterization of microalgae proteins from the extremophile Dunaliella. Lisboa: Técn; 2017. p. 1.
  • Sydney EB, Sturm W, de Carvalho JC, et al. Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol. 2010;101(15):5892–5896. DOI:10.1016/j.biortech.2010.02.088.
  • Weiss TL, Johnston JS, Fujisawa K, et al. Genome size and phylogenetic analysis of the A and L races of Botryococcus braunii. J Appl Phycol. 2011;23(5):833–839. DOI:10.1007/s10811-010-9586-7.
  • D’Alessandro EB, Antoniosi Filho NR. Concepts and studies on lipid and pigments of microalgae: a review. Renew Sust Energ Rev. 2016;58:832–841.
  • Shuba ES, Kifle D. Microalgae to biofuels:‘promising’alternative and renewable energy, review. Renew Sust Energ Rev. 2018;81:743–755.
  • Zullaikah S, Jessinia MCP, Yasmin M, Rachimoellah M, Wu DW, et al. Lipids extraction from wet and unbroken microalgae Chlorella vulgaris using subcritical water. In: Materials science forum. Vol. 964, Trans Tech Publications Ltd; 2019. p. 103–108.
  • Becker EW. Microalgae: biotechnology and microbiology. Vol. 10, Cambridge University Press; 1994.
  • Wolkers H, Barbosa, M, Kleinegris, D, Bosma, R, Wijffels, RH, et al. Microalgae: the green gold of the future. Wageningen UR; 2011.
  • Tandon P, Jin Q. Microalgae culture enhancement through key microbial approaches. Renew Sust Energ Rev. 2017;80:1089–1099.
  • Mata TM, Rojas-Solórzano LR, Finol E, et al. Lipid content and productivity of Arthrospira platensis and Chlorella vulgaris under mixotrophic conditions and salinity stress. Chem Eng Trans. 2016;49:73–78.
  • Fuentes MR, Fernández GA, Pérez JS, Guerrero JG, et al. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem. 2000;70(3):345–353. DOI:10.1016/S0308-8146(00)00101-1.
  • Tibbetts SM, Bjornsson WJ, McGinn PJ. Biochemical composition and amino acid profiles of Nannochloropsis granulata algal biomass before and after supercritical fluid CO2 extraction at two processing temperatures. Anim Feed Sci Technol. 2015;204:62–71.
  • Tibbetts SM, J. Melanson R, C. Park K, et al. Nutritional evaluation of whole and lipid-extracted biomass of the microalga Scenedesmus sp. AMDD isolated in Saskatchewan, Canada for animal feeds: proximate, amino acid, fatty acid, carotenoid and elemental composition. Curr Biotechnol. 2015;4(4):530–546. DOI:10.2174/2211550104666150827201854.
  • Tibbetts SM, Whitney CG, MacPherson MJ, et al. Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Res. 2015;11:435–447.
  • Guschina IA, Harwood JL Algal lipids and their metabolism. In: Borowitzka M, Moheimani N editors. Algae for biofuels and energy. Springer; 2013. p. 17–36. DOI:10.1007/978-94-007-5479-9_2.
  • Cheah WY, Show PL, Yap YJ, et al. Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered. 2020;11(1):61–69. DOI:10.1080/21655979.2019.1704536.
  • Ahmad A, Banat F, Alsafar H, Hasan SW, et al. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. SciTotal Environ. 2022;806:150585.
  • Brown MR. Nutritional value and use of microalgae in aquaculture. Avances en Nutrición Acuicola VI Memorias del VI Simposium Internacional de Nutrición Acuícola. 2002;3:281–292.
  • Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56(8):365–379.
  • Tocher DR. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fisher Sci. 2003;11(2):107–184.
  • Colombo SM, Parrish CC, Wijekoon MP. Optimizing long chain-polyunsaturated fatty acid synthesis in salmonids by balancing dietary inputs. PloS one. 2018;13(10):e0205347.
  • Chen W, Wang Y, Han D, et al. Two filamentous microalgae as feed ingredients improved flesh quality and enhanced antioxidant capacity and immunity of the gibel carp (Carassius auratus gibelio). Aquaculture Nutr. 2019;25(5):1145–1155. DOI:10.1111/anu.12930.
  • Ju Z, Forster I, Dominy W. Effects of supplementing two species of marine algae or their fractions to a formulated diet on growth, survival and composition of shrimp (Litopenaeus vannamei). Aquaculture. 2009;292(3–4):237–243.
  • Sarker P, Gamble MM, Kelson S, et al. Nile tilapia (Oreochromis niloticus) show high digestibility of lipid and fatty acids from marine Schizochytrium sp. and of protein and essential amino acids from freshwater Spirulina sp. feed ingredients. Aquaculture Nutr. 2016;22(1):109–119. DOI:10.1111/anu.12230.
  • Teuling E, Schrama JW, Gruppen H, et al. Effect of cell wall characteristics on algae nutrient digestibility in Nile tilapia (Oreochromis niloticus) and African catfish (Clarus gariepinus). Aquaculture. 2017;479:490–500.
  • Batista S, Pintado M, Marques A, et al. Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. J Appl Phycol. 2020;32(5):3429–3446. DOI:10.1007/s10811-020-02185-2.
  • Agboola JO, Teuling E, Wierenga PA, et al. Cell wall disruption: an effective strategy to improve the nutritive quality of microalgae in African catfish (Clarias gariepinus). Aquaculture Nutr. 2019;25(4):783–797. DOI:10.1111/anu.12896.
  • Ghanbari M, Kneifel W, Domig KJ. A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture. 2015;448:464–475.
  • Nayak SK. Role of gastrointestinal microbiota in fish. Aquacult Res. 2010;41(11):1553–1573.
  • Regunathan C, Wesley S. Control of vibrio spp. in shrimp hatcheries using the green algae Tetraselmis suecica. Asian Fisher Sci. 2004;17(1/2):147–158.
  • Souza FPD, Lima ECSD, Urrea-Rojas AM, et al. Effects of dietary supplementation with a microalga (Schizochytrium sp.) on the hemato-immunological, and intestinal histological parameters and gut microbiota of Nile tilapia in net cages. PLoS One. 2020;15(1):e0226977. DOI:10.1371/journal.pone.0226977.
  • Cao S, Zhang P, Zou T, et al. Replacement of fishmeal by spirulina Arthrospira platensis affects growth, immune related-gene expression in gibel carp (Carassius auratus gibelio var. CAS III), and its challenge against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2018;79:265–273.
  • Sheikhzadeh N, Mousavi S, Hamidian G, et al. Role of dietary Spirulina platensis in improving mucosal immune responses and disease resistance of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2019;510:1–8.
  • Yeganeh S, Teimouri M, Amirkolaie AK. Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res Vet Sci. 2015;101:84–88.
  • Sousa I, Gouveia L, Batista AP, Raymundo A, Bandarra NM, et al. Microalgae in novel food products. Food Chem Res Dev. 2008;75–112.
  • Henry EC. Handbook of microalgal culture: biotechnology and applied phycology. Wiley Online Library; 2004.
  • Richmond A, editors. Handbook of microalgal culture: applied phycology and biotechnology. John Wiley & Sons; 2008.
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65(6):635–648.
  • Choopani A, Poorsoltan M, Fazilati M, Latifi AM, Salavati H, et al. Spirulina: a source of gamma-linoleic acid and its applications. J Appl Biotechnol Rep. 2016;3(4):483–488.
  • Freitas HR. Chlorella vulgaris as a source of essential fatty acids and micronutrients: a brief commentary. Open Plant Sci J. 2017;10(1):92–99.
  • Soletto D, Binaghi L, Lodi A, et al. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture. 2005;243(1–4):217–224. DOI:10.1016/j.aquaculture.2004.10.005.
  • Bleakley S, Hayes M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017;6(5):33.
  • Christaki E, Florou-Paneri P, Bonos E. Microalgae: a novel ingredient in nutrition. Int J Food Sci Nutr. 2011;62(8):794–799.
  • da Silva Vaz B, Moreira JB, Morais MGD, et al. Microalgae as a new source of bioactive compounds in food supplements. Curr Opin Food Sci. 2016;7:73–77.
  • Guil-Guerrero J, Navarro-Juárez R, López-Martınez JC, et al. Functional properties of the biomass of three microalgal species. J Food Eng. 2004;65(4):511–517. DOI:10.1016/j.jfoodeng.2004.02.014.
  • Kim -S-S, Rahimnejad S, Kim KW, Lee KJ, et al. Partial replacement of fish meal with Spirulina pacifica in diets for parrot fish (Oplegnathus fasciatus). Turk J Fisher Aquat Sci. 2013;13:197–204.
  • Wilson RP, Halver JE. Protein and amino acid requirements of fishes. Annu Rev Nutr. 1986;6(1):225–244.
  • Sørensen M, Berge GM, Reitan KI, Ruyter B, et al. Microalga Phaeodactylum tricornutum in feed for Atlantic salmon (Salmo salar) —Effect on nutrient digestibility, growth and utilization of feed. Aquaculture. 2016;460:116–123.
  • Annamalai SN, Das P, Thaher MIA, et al. Nutrients and energy digestibility of microalgal biomass for fish feed applications. Sustainability. 2021;13(23):13211. DOI:10.3390/su132313211.
  • Tibbetts SM, Mann J, Dumas A. Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture. 2017;481:25–39.
  • van Vliet S, Burd NA, van Loon LJ. The skeletal muscle anabolic response to plant-versus animal-based protein consumption. J Nutr. 2015;145(9):1981–1991.
  • Barka A, Blecker C. Microalgae as a potential source of single-cell proteins. A review. Base. 2016;427–436. DOI:10.25518/1780-4507.13132
  • YuCETEPE A, Saroglu O, Bildik F, et al. Optimisation of ultrasound-assisted extraction of protein from Spirulina platensis using RSM. Czech J Food Sci. 2018;36(1):98–108. DOI:10.17221/64/2017-CJFS.
  • Buono S, Langellotti AL, Martello A, et al. Functional ingredients from microalgae. Food Funct. 2014;5(8):1669–1685. DOI:10.1039/C4FO00125G.
  • Safi C, Charton M, Pignolet O, et al. Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J Appl Phycol. 2013;25(2):523–529. DOI:10.1007/s10811-012-9886-1.
  • Wu G. Functional Amino Acids in Growth, Reproduction, and Health. Adv Nutr. 2010;1(1):31–37.
  • White RL, Ryan RA. Long-term cultivation of algae in open-raceway ponds: lessons from the field. Ind Biotechnol. 2015;11(4):213–220.
  • Madhumathi M, Rengasamy R. Antioxidant status of Penaeus monodon fed with Dunaliella salina supplemented diet and resistance against WSSV. Int J Eng Sci Technol (IJEST). 2011;3(10):7249–7260.
  • Walker AB, Berlinsky DL. Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. North Am JAquacult. 2011;73(1):76–83.
  • Cerezuela R, Guardiola FA, Meseguer J, et al. Enrichment of gilthead seabream (Sparus aurata L.) diet with microalgae: effects on the immune system. Fish Physiol Biochem. 2012;38(6):1729–1739. DOI:10.1007/s10695-012-9670-9.
  • Maliwat GC, Velasquez S, Robil JL, et al. Growth and immune response of giant freshwater prawn Macrobrachium rosenbergii (De Man) postlarvae fed diets containing Chlorella vulgaris (Beijerinck). Aquacult Res. 2017;48(4):1666–1676. DOI:10.1111/are.13004.
  • Hajiahmadian M, Vajargah MF, Farsani HG, Chorchi MM, et al. Effect of Spirulina platensis meal as feed additive on growth performance and survival rate in golden barb fish, punius gelius (Hamilton, 1822). J Fisher Int. 2012;7(3–6):61–64.
  • Haas S, Bauer JL, Adakli A, et al. Marine microalgae Pavlova viridis and Nannochloropsis sp. as n-3 PUFA source in diets for juvenile European sea bass (Dicentrarchus labrax L.). J Appl Phycol. 2016;28(2):1011–1021. DOI:10.1007/s10811-015-0622-5.
  • Kiron V, Phromkunthong W, Huntley M, et al. Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquaculture Nutr. 2012;18(5):521–531. DOI:10.1111/j.1365-2095.2011.00923.x.
  • Ibrahem MD, Mohamed MF, Ibrahim MA, The role of Spirulina platensis (Arthrospira platensis) in growth and immunity of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection. 2013.
  • Begum H, Yusoff FM, Banerjee S, et al. Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr. 2016;56(13):2209–2222. DOI:10.1080/10408398.2013.764841.
  • Wichuk K, Brynjólfsson S, Fu W. Biotechnological production of value-added carotenoids from microalgae. Bioengineered. 2014;5(3):204–208.
  • Christaki E, Bonos E, Florou-Paneri P. Innovative microalgae pigments as functional ingredients in nutrition. In: Handbook of marine microalgae. Elsevier; 2015. p. 233–243.
  • Parmar RS, Singh C. A comprehensive study of eco-friendly natural pigment and its applications. Biochem Biophys Rep. 2018;13:22–26.
  • Raja R, Hemaiswarya S, Kumar NA, et al. A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol. 2008;34(2):77–88. DOI:10.1080/10408410802086783.
  • Rammuni M, Ariyadasa, TU, Nimarshana, PHV, Attalage, RA, et al. Comparative assessment on the extraction of carotenoids from microalgal sources: astaxanthin from H. pluvialis and β-carotene from D. salina. Food chemistry. 2019;277:128–134.
  • Ambati RR, Gogisetty, D, Aswathanarayana, RG, Ravi, S, Bikkina, PN, Bo, L, Yuepeng, S, et al. Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Critical reviews in food science and nutrition. 2019;59(12):1880–1902. DOI:10.1080/10408398.2018.1432561.
  • Chen B, Wan C, Mehmood MA, et al. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–a review. Bioresour Technol. 2017;244:1198–1206.
  • Sun X, Chang Y, Ye Y, et al. The effect of dietary pigments on the coloration of Japanese ornamental carp (koi, Cyprinus carpio L.). Aquaculture. 2012;342:62–68.
  • Ribeiro AR, Gonçalves A, Barbeiro M, et al. Phaeodactylum tricornutum in finishing diets for gilthead seabream: effects on skin pigmentation, sensory properties and nutritional value. J Appl Phycol. 2017;29(4):1945–1956. DOI:10.1007/s10811-017-1125-3.
  • Paniagua-Michel J. Chapter 16 - microalgal nutraceuticals. In: Kim S-K, editor. Handbook of marine microalgae. Boston: Academic Press; 2015. p. 255–267.
  • Jin E-S, Polle JE, Lee HK, Hyun SM, Chang M, et al. Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. J Microbiol Biotechnol. 2003;13(2):165–174.
  • Herrero M, Jaime L, Martín-Álvarez PJ, et al. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. J Agric Food Chem. 2006;54(15):5597–5603. DOI:10.1021/jf060546q.
  • Pauline S, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96. DOI:10.1263/jbb.101.87.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14(1):217–232.
  • Hu -C-C, Lin J-T, Lu F-J, et al. Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chem. 2008;109(2):439–446. DOI:10.1016/j.foodchem.2007.12.043.
  • Moheimani NR, Borowitzka MA. Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng. 2007;96(1):27–36.
  • Borowitzka MA. Dunaliella: biology, production, and markets. In: Richmond A, Hu Q, editors. Handbook of microalgal culture; 2013. p. 359–368.
  • Medina-Félix D, López-Elías JA, Martínez-Córdova LR, et al. Evaluation of the productive and physiological responses of Litopenaeus vannamei infected with WSSV and fed diets enriched with Dunaliella sp. J Invertebr Pathol. 2014;117:9–12.
  • Ruangsomboon S, Choochote S, Taveekijakarn P. Growth performance and nutritional composition of red tilapia (Oreochromis niloticus x O. mossambicus) fed diets containing raw Spirulina platensis. in The International Conference on Sustainable Community Development. 2010. Khon Kaen University, Nongkhai Campus Nong Kom Ko, Thailand.
  • Becker W. Microalgae in human and animal nutrition. In: Richmond A, editors. Handbook of microalgal culture. Blackwell, Oxford: Wiley Online Library; 2004.
  • Depeint F, Bruce WR, Shangari N, et al. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact. 2006;163(1–2):94–112. DOI:10.1016/j.cbi.2006.04.014.
  • Barbosa MJ, Zijffers JW, Nisworo A, et al. Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat‐panel reactor using the A‐stat technique. Biotechnol Bioeng. 2005;89(2):233–242. DOI:10.1002/bit.20346.
  • Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci IJBS. 2008;4(2):89.
  • Hernández-Carmona G, Carrillo-Domínguez S, Arvizu-Higuera DL, Rodríguez-Montesinos YE, Murillo-Álvarez JI, Muñoz-Ochoa M, Castillo-Domínguez RM, et al. Monthly variation in the chemical composition of Eisenia arborea JE areschoug. Journal of applied phycology. 2009;21(5):607–616. DOI:10.1007/s10811-009-9454-5.
  • Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017;9(11):1211.
  • Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol. 2012;96(3):631–645.
  • Raven JA, Beardall J. Carbohydrate metabolism and respiration in algae. In: Larkum AWD, Douglas SE, Raven JA, editors. Photosynthesis in Algae. Advances in Photosynthesis and Respiration, Vol. 14. Springer, Dordrecht; 2003. p. 205–224.
  • Milledge JJ. Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Bio/Technol. 2011;10(1):31–41.
  • Van Krimpen MM, Bikker P, Van der Meer IM, Van der Peet-Schwering CMC, Vereijken JM, et al. Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products. Wageningen UR Livestock Research; 2013.
  • Rismani-Yazdi H, Haznedaroglu, BZ, Bibby, K, Peccia, J, et al. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics. 2011;12(1):1–17. DOI:10.1186/1471-2164-12-148.
  • Chacón‐Lee T, González‐Mariño G. Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sci Food Saf. 2010;9(6):655–675.
  • Iwamoto H. Industrial production of microalgal cell-mass and secondary products - major industrial species: Chlorella. In: Richmond A, editors. Handbook of microalgal culture: biotechnology and applied phycology. 2003. p. 253–263.
  • Wee KL Aquaculture nutrition research in Australia. in Proceedings of Aquaculture Nutrition Workshop, Salamander Bay. 1991.
  • Niccolai A, Chini Zittelli G, Rodolfi L, et al. Microalgae of interest as food source: biochemical composition and digestibility. Algal Res. 2019;42:101617.
  • Sarker PK, Kapuscinski AR, Lanois AJ, et al. Towards sustainable aquafeeds: complete substitution of fish oil with marine microalga Schizochytrium sp. improves growth and fatty acid deposition in juvenile Nile tilapia (Oreochromis niloticus). PloS one. 2016;11(6):e0156684. DOI:10.1371/journal.pone.0156684.
  • Skrede A, Mydland L, Ahlstrøm Ø, et al. Evaluation of microalgae as sources of digestible nutrients for monogastric animals. J Anim Feed Sci. 2011;20(1):131–142. DOI:10.22358/jafs/66164/2011.
  • Sahoo PK, Mukherjee SC. Effect of dietary β-1,3 glucan on immune responses and disease resistance of healthy and aflatoxin B1-induced immunocompromised rohu (Labeo rohita Hamilton). Fish Shellfish Immunol. 2001;11(8):683–695.
  • Angelis SD, Novak AC, Sydney EB, et al. Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: process preliminary optimization and partial characterization. Appl Biochem Biotechnol. 2012;167(5):1092–1106. DOI:10.1007/s12010-012-9642-7.
  • Ismail MM, Ismail GA, El-Sheekh MM. Potential assessment of some micro-and macroalgal species for bioethanol and biodiesel production. Energy Sources Part A. 2020;1–17. DOI:10.1080/15567036.2020.1758853
  • Mišurcová L, Škrovánková S, Samek D, Ambrožová J, Machů L, et al. Health benefits of algal polysaccharides in human nutrition. Advances in food and nutrition research. 2012;66:75–145.
  • Lopatina N, Klochkova N, Usov A. Polysaccharides of algae 69. monosaccharide composition of polysaccharides of several Pacific red algae studied by reductive hydrolysis of biomass. Russ Chem Bull. 2017;66(5):915–921.
  • Wang Y, Guo W, Yen H-W, et al. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour Technol. 2015;198:619–625.
  • Scholz MJ, Weiss TL, Jinkerson RE, et al. Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell. 2014;13(11):1450–1464. DOI:10.1128/EC.00183-14.
  • Palinska KA, Krumbein WE. Perforation patterns in the peptidoglycan wall of filamentous cyanobacteria. J Phycol. 2000;36(1):139–145.
  • Teuling E, Wierenga PA, Agboola JO, et al. Cell wall disruption increases bioavailability of Nannochloropsis gaditana nutrients for juvenile Nile tilapia (Oreochromis niloticus). Aquaculture. 2019;499:269–282.
  • Valente LMP, Custódio M, Batista S, et al. Defatted microalgae (Nannochloropsis sp.) from biorefinery as a potential feed protein source to replace fishmeal in European sea bass diets. Fish Physiol Biochem. 2019;45(3):1067–1081. DOI:10.1007/s10695-019-00621-w.
  • Bitou N, Ninomiya M, Tsujita T, et al. Screening of lipase inhibitors from marine algae. Lipids. 1999;34(5):441–445. DOI:10.1007/s11745-999-0383-7.
  • Sinha AK, Kumar V, Makkar HPS, et al. Non-starch polysaccharides and their role in fish nutrition – a review. Food Chem. 2011;127(4):1409–1426. DOI:10.1016/j.foodchem.2011.02.042.
  • Sarker PK, Kapuscinski AR, Bae AY, et al. Towards sustainable aquafeeds: evaluating substitution of fishmeal with lipid-extracted microalgal co-product (Nannochloropsis oculata) in diets of juvenile Nile tilapia (Oreochromis niloticus). PLoS One. 2018;13(7):e0201315. DOI:10.1371/journal.pone.0201315.
  • Karapanagiotidis IT, Bell MV, Little DC, et al. Replacement of dietary fish oils by alpha‐linolenic acid‐rich oils lowers omega 3 content in tilapia flesh. Lipids. 2007;42(6):547–559. DOI:10.1007/s11745-007-3057-1.
  • Wee K Aquaculture nutrition research in Australia. in Proceedings of Aquaculture Nutrition Workshop, Salamander Bay. 1991.
  • Falge R, Schpanof L, Jurss K. Amylase, esterase and protease activity in the intestine content of rainbow salmo gairdneri rich., after feeding with feed containing different amounts of starch and protein. J Ichthyol. 1978;18:283–287.
  • Rodehutscord M, Borchert F, Gregus Z, et al. Availability and utilisation of free lysine in rainbow trout (Oncorhynchus mykiss): 2. Comparison of l-lysine· HCl and l-lysine sulphate. Aquaculture. 2000;187(1–2):177–183. DOI:10.1016/S0044-8486(99)00389-0.
  • Encarnação P, de Lange C, Rodehutscord M, et al. Diet digestible energy content affects lysine utilization, but not dietary lysine requirements of rainbow trout (Oncorhynchus mykiss) for maximum growth. Aquaculture. 2004;235(1–4):569–586. DOI:10.1016/j.aquaculture.2004.01.001.
  • Tibbetts SM, Milley JE, Lall SP. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol. 2015;27(3):1109–1119.
  • Goiris K, Muylaert K, Fraeye I, et al. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol. 2012;24(6):1477–1486. DOI:10.1007/s10811-012-9804-6.
  • Li H-B, Cheng K, Wong C, et al. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007;102(3):771–776. DOI:10.1016/j.foodchem.2006.06.022.
  • Evans DH, Claiborne JB, Currie S, The physiology of fishes. 2013.
  • Yang L, Li H, Lu Q, et al. Emerging trends of culturing microalgae for fish‐rearing environment protection. J Chem Technol Biot. 2021;96(1):31–37. DOI:10.1002/jctb.6563.
  • Chen Z, Qiu S, Amadu AA, Shen Y, Wang L, Wu Z, Ge S, et al. Simultaneous improvements on nutrient and Mg recoveries of microalgal bioremediation for municipal wastewater and nickel laterite ore wastewater. Bioresource Technology. 2020;297:122517.
  • Chen Z, Qiu S, Yu Z, Li M, Ge S, et al. Enhanced secretions of algal cell-adhesion molecules and metal ion-binding exoproteins promote self-flocculation of Chlorella sp. Cultivated Munic Wastewater Environ Sci Technol. 2021;55(17):11916–11924.
  • Bulgariu D, Bulgariu L. Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresour Technol. 2012;103(1):489–493.
  • Leong YK, Chang J-S. Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol. 2020;303:122886.
  • Ahmad A, Bhat AH, Buang A. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads. Environ Technol. 2019;40(14):1793–1809.
  • Kumar KS, Dahms H-U, Won E-J, et al. Microalgae–a promising tool for heavy metal remediation. Ecotoxicol Environ Saf. 2015;113:329–352.
  • Tran HT, Vu ND, Matsukawa M, et al. Heavy metal biosorption from aqueous solutions by algae inhabiting rice paddies in Vietnam. J Environ Chem Eng. 2016;4(2):2529–2535. DOI:10.1016/j.jece.2016.04.038.
  • Deng L, Su Y, Su H, et al. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater. 2007;143(1–2):220–225. DOI:10.1016/j.jhazmat.2006.09.009.
  • Ahmad A, Bhat AH, Buang A. Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: kinetic and equilibrium modeling. J Clean Prod. 2018;171:1361–1375.
  • Ashfaq A, Bhat A, Azizul B. Immobilized Chlorella vulgaris for efficient palm oil mill effluent treatment and heavy metals removal. Desalin Water Treat. 2017;81:105–117.
  • Tian LX, Liu YJ, Yang HJ, et al. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella). Aquacult Int. 2012;20(2):283–293. DOI:10.1007/s10499-011-9456-6.
  • Lin S-M, Shi C-M, Mu -M-M, et al. Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides. Fish Shellfish Immunol. 2018;78:121–126.
  • Polakof S, Panserat, S, Soengas, JL, Moon, TW, et al. Glucose metabolism in fish: a review. Journal of Comparative Physiology B. 2012;182(8):1015–1045.
  • Ekpo I, Bender J. Digestibility of a commercial fish feed, wet algae, and dried algae by Tilapia nilotica and silver carp. The Progressive Fish-Culturist. 1989;51(2):83–86.
  • Kiron V, Sørensen M, Huntley M, et al. Defatted biomass of the microalga, Desmodesmus sp., can replace fishmeal in the feeds for Atlantic salmon. Front Mar Sci. 2016;3:67.
  • Sørensen M, Gong Y, Bjarnason F, et al. Nannochloropsis oceania-derived defatted meal as an alternative to fishmeal in Atlantic salmon feeds. PloS one. 2017;12(7):e0179907. DOI:10.1371/journal.pone.0179907.
  • Ahmad MT, Shariff M, Md. Yusoff F, et al. Applications of microalga Chlorella vulgaris in aquaculture. Revi Aquacult. 2020;12(1):328–346. DOI:10.1111/raq.12320.
  • Abro R, Digestion and metabolism of carbohydrates in fish. Vol. 2014. 2014.
  • Krogdahl Å, Hemre GI, Mommsen T. Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquaculture Nutr. 2005;11(2):103–122.
  • Córdova O, Passos F, Chamy R. Enzymatic pretreatment of microalgae: cell wall disruption, biomass solubilisation and methane yield increase. Appl Biochem Biotechnol. 2019;189(3):787–797.
  • Ometto F, Quiroga G, Pšenička P, et al. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res. 2014;65:350–361.
  • Gong Y, Guterres HADS, Huntley M, et al. Digestibility of the defatted microalgae Nannochloropsis sp. and Desmodesmus sp. when fed to Atlantic salmon, Salmo salar. Aquaculture Nutr. 2018;24(1):56–64. DOI:10.1111/anu.12533.
  • Becker W. Microalgae for aquaculture. The nutritional value of microalgae for aquaculture. In: Richmond A, editor. Handbook of microalgal cultureBlackwell, Oxford; 2004. p. 380.
  • Guedes AC, Sousa-Pinto I, Malcata FX. Application of microalgae protein to aquafeed, in handbook of marine microalgae. Elsevier, Academic Press; 2015. p. 93–125.
  • Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv. 2012;30(3):709–732.
  • Gong Y, Bandara T, Huntley M, et al. Microalgae Scenedesmus sp. as a potential ingredient in low fishmeal diets for Atlantic salmon (Salmo salar L.). Aquaculture. 2019;501:455–464.
  • Savoie A, Le François NR, Lamarre SG, et al. Dietary protein hydrolysate and trypsin inhibitor effects on digestive capacities and performances during early-stages of spotted wolffish: suggested mechanisms. Comp Biochem Physiol Part A. 2011;158(4):525–530. DOI:10.1016/j.cbpa.2010.12.017.
  • de Carvalho Carneiro D, Oliveira MM, da Cunha Lima ST. Estimating protein quantities from microalgae: protein per biomass percentage, spectroscopic concentration, and lectin content. Chem Papers. 2019;73(10):2535–2540.
  • Silva A, Cavalcanti VLR, Porto ALF, et al. The green microalgae Tetradesmus obliquus (Scenedesmus acutus) as lectin source in the recognition of ABO blood type: purification and characterization. J Appl Phycol. 2020;32(1):103–110. DOI:10.1007/s10811-019-01923-5.
  • Wu L-C, Ho J-AA, Shieh M-C, et al. Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. J Agric Food Chem. 2005;53(10):4207–4212. DOI:10.1021/jf0479517.
  • Li Y, Ai Q, Mai K, et al. Comparison of high-protein soybean meal and commercial soybean meal partly replacing fish meal on the activities of digestive enzymes and aminotransferases in juvenile Japanese seabass, Lateolabrax japonicus (Cuvier, 1828). Aquacult Res. 2014;45(6):1051–1060. DOI:10.1111/are.12042.
  • Seo S-H, Cho S-J. Changes in allergenic and antinutritional protein profiles of soybean meal during solid-state fermentation with Bacillus subtilis. Lwt. 2016;70:208–212.
  • Ströher R, Stenzel M, Pereira NC, et al. Enzymatic extraction of protein from toasted and not toasted soybean meal. Proc Food Sci. 2011;1:463–469.
  • Olukomaiya OO, Adiamo OQ, Fernando WC, et al. Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem. 2020;315:126238.
  • Srivastava A, Kar R. Application of immobilized tannase from Aspergillus Niger for the removal of tannin from myrobalan juice. Indian J Microbiol. 2010;50(1):46–51.
  • Alonso R, Orue E, Marzo F. Effects of extrusion and conventional processing methods on protein and antinutritional factor contents in pea seeds. Food Chem. 1998;63(4):505–512.
  • Ayalew D, Keber T, Ayenew M. Evaluation of anti-nutritional factor reduction techniques for triticale improved utilization system in Amhara region. J Food Process Technol. 2017;8(7):681.
  • Mukhopadhyay N, Sarkar S, Bandyopadhyay S. Effect of extrusion cooking on anti-nutritional factor tannin in linseed (Linum usitatissimum) meal. Int J Food Sci Nutr. 2007;58(8):588–594.
  • Van Haver L, Nayar S. Polyelectrolyte flocculants in harvesting microalgal biomass for food and feed applications. Algal Res. 2017;24:167–180.
  • Kim B, Im H, Lee JW. In situ transesterification of highly wet microalgae using hydrochloric acid. Bioresour Technol. 2015;185:421–425.
  • Zhang J, Hu B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol. 2012;114:529–535.
  • Hameed A, Hussain SA, Yang J, et al. Antioxidants potential of the filamentous fungi (Mucor circinelloides). Nutrients. 2017;9(10):1101. DOI:10.3390/nu9101101.
  • Hong K-J, Lee C-H, Kim SW. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J Med Food. 2004;7(4):430–435.
  • Hu Y, Xiao Y, Liao K, et al. Development of microalgal biofilm for wastewater remediation: from mechanism to practical application. J Chem Technol Biot. 2021;96(11):2993–3008. DOI:10.1002/jctb.6850.
  • Lu Q, Han P, Chen F, et al. A novel approach of using zeolite for ammonium toxicity mitigation and value-added Spirulina cultivation in wastewater. Bioresour Technol. 2019;280:127–135.
  • Quinn JC, Davis R. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol. 2015;184:444–452.
  • Ruiz J, Olivieri G, de Vree J, et al. Towards industrial products from microalgae. Energy Environ Sci. 2016;9(10):3036–3043. DOI:10.1039/C6EE01493C.
  • Palmegiano GB, Gai F, Daprà F, et al. Effects of Spirulina and plant oil on the growth and lipid traits of white sturgeon (Acipenser transmontanus) fingerlings. Aquacult Res. 2008;39(6):587–595. DOI:10.1111/j.1365-2109.2008.01914.x.
  • Pizzera A, Scaglione D, Bellucci M, et al. Digestate treatment with algae-bacteria consortia: a field pilot-scale experimentation in a sub-optimal climate area. Bioresour Technol. 2019;274:232–243.
  • Bongiorno T, Foglio L, Proietti L, et al. Microalgae from biorefinery as potential protein source for siberian Sturgeon (A. baerii) aquafeed. Sustainability. 2020;12(21):8779. DOI:10.3390/su12218779.
  • Ahmad A, Buang A, Bhat AH. Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): a review. Renew Sust Energ Rev. 2016;65:214–234.
  • da Silva TL, Reis A Scale-up Problems for the Large Scale Production of Algae. In: Das D, editor. Algal Biorefinery: An Integrated Approach. Springer, Cham; 2015. p. 125–149.
  • Smetana S, Sandmann M, Rohn S, et al. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour Technol. 2017;245:162–170.
  • Becker EW. Micro-algae as a source of protein. Biotechnol Adv. 2007;25(2):207–210.
  • Chen S, Chi Z, O’Fallon JV, et al. System integration for producing microalgae as biofuel feedstock. Biofuels. 2010;1(6):889–910. DOI:10.4155/bfs.10.52.
  • Hussein EES, Dabrowski K, El-Saidy DMSD, et al. Enhancing the growth of Nile tilapia larvae/juveniles by replacing plant (gluten) protein with algae protein. Aquacult Res. 2013;44(6):937–949. DOI:10.1111/j.1365-2109.2012.03100.x.
  • Ahmad A, Shah SMU, Othman MF, et al. Aerobic and anaerobic co-cultivation of Nannochloropsis oculata with oil palm empty fruit bunch for enhanced biomethane production and palm oil mill effluent treatment. Desalin Water Treat. 2015;56(8):2055–2065. DOI:10.1080/19443994.2014.960458.
  • Li J, Liu Y, Cheng JJ, et al. Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds. N Biotechnol. 2015;32(6):588–596. DOI:10.1016/j.nbt.2015.02.001.
  • Ahmad A, Shah, SMU, Othman, MF, Abdullah, MA, et al. Biomethane production and palm oil mill effluent treatment by co-cultivation of Nannochloropsis oculata. In: Applied mechanics and materials. Trans Tech Publications Ltd; 2014. p. 818–821.
  • Hannon M, Gimpel J, Tran M, et al. Biofuels from algae: challenges and potential. Biofuels. 2010;1(5):763–784. DOI:10.4155/bfs.10.44.
  • Nagappan S, Devendran S, Tsai P-C, et al. Metabolomics integrated with transcriptomics and proteomics: evaluation of systems reaction to nitrogen deficiency stress in microalgae. Process Biochem. 2020;91:1–14.
  • Berge G, Hatlen B, Odom JM, et al. Physical treatment of high EPA Yarrowia lipolytica biomass increases the availability of n-3 highly unsaturated fatty acids when fed to Atlantic salmon. Aquaculture Nutr. 2013;19:110–121.
  • Sørensen I, Rose JKC, Doyle JJ, et al. The Charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants. Plant Signal Behav. 2012;7(1):1–3. DOI:10.4161/psb.7.1.18574.