1,344
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

lncRNA NEAT1 promotes autophagy of neurons in mice by impairing miR-107-5p

, &
Pages 12261-12274 | Received 26 Jan 2022, Accepted 01 Apr 2022, Published online: 19 May 2022

References

  • Boros FA, Vecsei L, Klivenyi P. NEAT1 on the field of Parkinson’s disease: offense, defense, or a player on the bench? J Parkinsons Dis. 2021;11:123–138.
  • Sun Q, Zhang Y, Wang S, et al. NEAT1 decreasing suppresses Parkinson’s disease progression via acting as miR-1301-3p sponge. J Mol Neurosci. 2021;71:369–378.
  • Liu T, Zhang Y, Liu W, et al. LncRNA NEAT1 regulates the development of Parkinson’s disease by targeting AXIN1 via sponging miR-212-3p. Neurochem Res. 2021;46:230–240.
  • Dong LI, Zheng Y, Gao L, et al. lncRNA NEAT1 prompts autophagy and apoptosis in MPTP-induced Parkinson’s disease by impairing miR-374c-5p. Acta Biochim Biophys Sin (Shanghai). 2021;53:870–882.
  • Chen MY, Fan K, Zhao LJ, et al. Long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) sponges microRNA-124-3p to up-regulate phosphodiesterase 4B (PDE4B) to accelerate the progression of Parkinson’s disease. Bioengineered. 2021;12:708–719.
  • Boros FA, Maszlag-Torok R, Vecsei L, et al. Increased level of NEAT1 long non-coding RNA is detectable in peripheral blood cells of patients with Parkinson’s disease. Brain Res. 2020;1730:146672.
  • Sun J, Li H, Jin Y, et al. Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson’s disease via gut microbiota-GLP-1 pathway. Brain Behav Immun. 2021;91:703–715.
  • Wang T, Li C, Han B, et al. Neuroprotective effects of Danshensu on rotenone-induced Parkinson’s disease models in vitro and in vivo. BMC Compl Med Ther. 2020;20:20.
  • Wang T, Li C, Han B, et al. Neuroprotective effects of Danshensu on rotenone-induced Parkinson’s disease models in vitro and in vivo. BMC Compl Med Ther. 2020;20:20.
  • Niaz A, Karunia J, Mandwie M, et al. Robust dopaminergic differentiation and enhanced LPS-induced neuroinflammatory response in serum-deprived human SH-SY5Y cells: implication for Parkinson’s disease. J Mol Neurosci. 2021;71:565–582.
  • Dong LI, Zheng Y, Gao L, et al. lncRNA NEAT1 prompts autophagy and apoptosis in MPTP-induced Parkinson’s disease by impairing miR-374c-5p. Acta Biochim Biophys Sin (Shanghai). 2021;53:870–882.
  • Cai LJ, Tu L, Huang XM, et al. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain. 2020;13:130.
  • Clark EH, Vazquez DLTA, Hoshikawa T, et al. Targeting mitophagy in Parkinson’s disease. J Biol Chem. 2021;296:100209.
  • Gong X, Huang M, Chen L. Mechanism of miR-132-3p promoting neuroinflammation and dopaminergic neurodegeneration in Parkinson’s disease. eNeuro. 2022;9:ENEURO.0393–21.2021.
  • Cai LJ, Tu L, Huang XM, et al. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain. 2020;13:130.
  • Marchioni C, Santos-Lobato BL, Queiroz M, et al. Endocannabinoid levels in patients with Parkinson’s disease with and without levodopa-induced dyskinesias. J Neural Transm (Vienna). 2020;127:1359–1367.
  • Fayyad M, Salim S, Majbour N, et al. Parkinson’s disease biomarkers based on alpha-synuclein. J Neurochem. 2019;150:626–636.
  • Yu G, Wang Y, Zhao J. Inhibitory effect of mitoquinone against the alpha-synuclein fibrillation and relevant neurotoxicity: possible role in inhibition of Parkinson’s disease. Biol Chem. 2021;403:253–263.
  • Liu J, Liu D, Zhao B, et al. Long non-coding RNA NEAT1 mediates MPTP/MPP(+)-induced apoptosis via regulating the miR-124/KLF4 axis in Parkinson’s disease. Open Life Sci. 2020;15:665–676.
  • Simchovitz A, Hanan M, Niederhoffer N, et al. NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J. 2019;33:11223–11234.
  • Peng T, Liu X, Wang J, et al. Expression of concern: long noncoding RNA HAGLROS regulates apoptosis and autophagy in Parkinson’s disease via regulating miR-100/ATG10 axis and PI3K/Akt/mTOR pathway activation. Artif Cells Nanomed Biotechnol. 2020;48:708.
  • Peng T, Liu X, Wang J, et al. Long noncoding RNA HAGLROS regulates apoptosis and autophagy in Parkinson’s disease via regulating miR-100/ATG10 axis and PI3K/Akt/mTOR pathway activation. Artif Cells Nanomed Biotechnol. 2019;47:2764–2774.
  • Xu X, Zhuang C, Wu Z, et al. LincRNA-p21 inhibits cell viability and promotes cell apoptosis in Parkinson’s disease through activating alpha-synuclein expression. Biomed Res Int. 2018;2018:8181374.
  • Zhang L, Wang H. Autophagy in traumatic brain injury: a new target for therapeutic intervention. Front Mol Neurosci. 2018;11:190.
  • Zhang Q, Huang XM, Liao JX, et al. LncRNA HOTAIR promotes neuronal damage through facilitating NLRP3 mediated-pyroptosis activation in Parkinson’s disease via regulation of miR-326/ELAVL1 axis. Cell Mol Neurobiol. 2021;41:1773–1786.
  • Zhang Y, Xu W, Nan S, et al. MicroRNA-326 inhibits apoptosis and promotes proliferation of dopaminergic neurons in Parkinson’s disease through suppression of KLK7-mediated MAPK signaling pathway. J Mol Neurosci. 2019;69:197–214.
  • Yao YF, Qu MW, Li GC, et al. Circulating exosomal miRNAs as diagnostic biomarkers in Parkinson’s disease. Eur Rev Med Pharmacol Sci. 2018;22:5278–5283.
  • Zhu J, Wang S, Liang Y, et al. Inhibition of microRNA-505 suppressed MPP+-induced cytotoxicity of SHSY5Y cells in an in vitro Parkinson’s disease model. Eur J Pharmacol. 2018;835:11–18.