1,293
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

β-Patchoulene represses hypoxia-induced proliferation and epithelial-mesenchymal transition of liver cancer cells

, , , , , , , & show all
Pages 11907-11922 | Received 15 Nov 2021, Accepted 07 Apr 2022, Published online: 12 May 2022

References

  • Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Cancer. 2017 Jan 30; 16(1):4.
  • Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021 Jan 21 7(1):6.
  • Madkhali AA, Fadel ZT, Aljiffry MM, et al. Surgical treatment for hepatocellular carcinoma. Saudi J Gastroenterol. 2015 Jan-Feb;21(1):11–17.
  • Multhoff G, Vaupel P. Hypoxia Compromises Anti-Cancer Immune Responses. Adv Exp Med Biol. 2020;1232:131–143.
  • Manoochehri Khoshinani H, Afshar S, Najafi R. Hypoxia: a double-edged sword in cancer therapy. Cancer Invest. 2016 Nov 25; 34(10):536–545.
  • Chen C, Lou T. Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget. 2017 Jul 11; 8(28):46691–46703.
  • Swamy MK, Sinniah UR. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance. Molecules. 2015 May 12; 20(5):8521–8547.
  • Liu Y, Wu J, Chen L, et al. β-patchoulene simultaneously ameliorated dextran sulfate sodium-induced colitis and secondary liver injury in mice via suppressing colonic leakage and flora imbalance. Biochem Pharmacol. 2020 Dec;182:114260.
  • Wu JZ, Liu YH, Liang JL, et al. Protective role of β-patchoulene from Pogostemon cablin against indomethacin-induced gastric ulcer in rats: involvement of anti-inflammation and angiogenesis. Phytomedicine. 2018 Jan 15;39:111–118.
  • DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012 Mar;246(1):379–400.
  • Karin M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol. 2009 Nov;1(5):a000141.
  • Lu X, Ma P, Shi Y, et al. NF-κB increased expression of 17β-hydroxysteroid dehydrogenase 4 promotes HepG2 proliferation via inactivating estradiol. Mol Cell Endocrinol. 2015 Feb 5;401:1–11.
  • Yang Q, Zhang J, Xu S, et al. Knockdown of PHF5A inhibits migration and invasion of HCC cells via downregulating NF-κB Signaling. Biomed Res Int. 2019 Jan 15 2019;1621854.
  • Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007 Oct 9;2007(407):cm8.
  • Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015 Sep;5(5):378–389.
  • Wen Y, Zhou X, Lu M, et al. Bclaf1 promotes angiogenesis by regulating HIF-1α transcription in hepatocellular carcinoma. Oncogene. 2019 Mar;38(11):1845–1859.
  • Cui CP, Wong CC, Kai AK, et al. SENP1 promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop. Gut. 2017 Dec;66(12):2149–2159.
  • Feng Y, Wei G, Zhang L, et al. LncRNA DARS-AS1 aggravates the growth and metastasis of hepatocellular carcinoma via regulating the miR-3200-5p-Cytoskeleton associated protein 2 (CKAP2) axis. Bioengineered. 2021 Dec;12(1):8217–8232.
  • Chen X-Y, Dou Y-X, Luo -D-D, et al. β-Patchoulene from patchouli oil protects against LPS-induced acute lung injury via suppressing NF-κB and activating Nrf2 pathways. Int Immunopharmacol. 2017 Sep;50:270–278.
  • Zhou Y, Li K, Zou X, et al. LncRNA DHRS4-AS1 ameliorates hepatocellular carcinoma by suppressing proliferation and promoting apoptosis via miR-522-3p/SOCS5 axis. Bioengineered. 2021 Dec;12(2):10862–10877.
  • Liu L, Zhu XD, Wang WQ, et al. Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis. Clin Cancer Res. [2010 May 15];16(10):2740–2750.
  • Liang H, Yang CX, Zhang B, et al. Sevoflurane suppresses hypoxia-induced growth and metastasis of lung cancer cells via inhibiting hypoxia-inducible factor-1α. J Anesth. 2015 Dec;29(6):821–830.
  • Peng JK, Shen SQ, Wang J, et al. Ηypoxia-inducible factor 1-α promotes colon cell proliferation and migration by upregulating AMPK-related protein kinase 5 under hypoxic conditions. Oncol Lett. 2018 Mar;15(3):3639–3645.
  • Wang G, Bai X, Jiang G, et al. GIT1 overexpression promotes epithelial-mesenchymal transition and predicts poor prognosis in hepatocellular carcinoma. Bioengineered. 2021 Dec;12(1):30–43.
  • Shi Y, Song Q, Yu S, et al. Microvascular invasion in hepatocellular carcinoma overexpression promotes cell proliferation and inhibits cell apoptosis of hepatocellular carcinoma via inhibiting miR-199a expression. Onco Targets Ther. 2015 Aug 27;8:2303–2310.
  • Gong C, Fang J, Li G, et al. Effects of microRNA-126 on cell proliferation, apoptosis and tumor angiogenesis via the down-regulating ERK signaling pathway by targeting EGFL7 in hepatocellular carcinoma. Oncotarget. 2017 Apr 20;8(32):52527–52542.
  • Shi DM, Li LX, Bian XY, et al. miR-296-5p suppresses EMT of hepatocellular carcinoma via attenuating NRG1/ERBB2/ERBB3 signaling. J Exp Clin Cancer Res. 2018 Nov 29;37(1):294.
  • Zhu X, Jiang S, Wu Z, et al. Long non-coding RNA TTN antisense RNA 1 facilitates hepatocellular carcinoma progression via regulating miR-139-5p/SPOCK1 axis. Bioengineered. 2021 Dec;12(1):578–588.
  • Wang Y, Yang L, Chen T, et al. A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis. Mol Cancer. 2019 Feb 19;18(1):28.
  • Zhang Y, Lu C, Cui H. Long non-coding RNA SNHG22 facilitates hepatocellular carcinoma tumorigenesis and angiogenesis via DNA methylation of microRNA miR-16-5p. Bioengineered. 2021 Dec;12(1):7446–7458.
  • Chen J, Huang X, Wang W, et al. LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging (Albany NY). 2018 Nov 29;10(11):3371–3381.
  • Zhang R, Guo C, Liu T, et al. MicroRNA miR-495 regulates the development of hepatocellular carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3). Bioengineered. 2021 Dec;12(1):6902–6912.
  • Xiong Q XX, XY HDX, Chen XQ. Advances in hypoxia-mediated mechanisms in hepatocellular carcinoma. Mol Pharmacol. 2017 Sep;92(3):246–255.
  • Myung SJ, Yoon JH. Hypoxia in hepatocellular carcinoma. Korean J Hepatol. 2007 Mar;13(1):9–19.
  • Liang J, Dou Y, Wu X, et al. Prophylactic efficacy of patchoulene epoxide against ethanol-induced gastric ulcer in rats: influence on oxidative stress, inflammation and apoptosis. Chem Biol Interact. 2018 Mar 1;283:30–37.
  • Huang XF, Sheu GT, Chang KF, et al. Pogostemon cablin Triggered ROS-Induced DNA damage to arrest cell cycle progression and induce apoptosis on human hepatocellular carcinoma in vitro and in vivo. Molecules. 2020 Nov 30;25(23):5639.
  • Xu N, Luo H, Li M, et al. β-patchoulene improves lipid metabolism to alleviate non-alcoholic fatty liver disease via activating AMPK signaling pathway. Biomed Pharmacother. 2021;134:111104.
  • Czauderna C, Castven D, Mahn FL, et al. Context-Dependent role of NF-κB signaling in primary liver cancer-from tumor development to therapeutic implications. Cancers (Basel). 2019 Jul 25;11(8):1053.
  • Arsura M, Cavin LG. Nuclear factor-kappaB and liver carcinogenesis. Cancer Lett. 2005 Nov 18;229(2):157–169.
  • Mao X, Wong SY, Tse EY, et al. Mechanisms through which hypoxia-induced caveolin-1 drives tumorigenesis and metastasis in hepatocellular carcinoma. Cancer Res. [2016 Dec 15];76(24):7242–7253.
  • Zhang Z, Chen X, Chen H, et al. Anti-inflammatory activity of β-patchoulene isolated from patchouli oil in mice. Eur J Pharmacol. 2016 Jun 15;781:229–238.
  • Li S, Li Y, Sun H, et al. Mulberry fruit polysaccharides alleviate diethylnitrosamine/phenobarbital-induced hepatocarcinogenesis in vivo: the roles of cell apoptosis and inflammation. Bioengineered. 2021 Dec;12(2):11599–11611.
  • Lin D, Wu J. Hypoxia inducible factor in hepatocellular carcinoma: a therapeutic target. World J Gastroenterol. 2015 Nov 14;21(42):12171–12178.
  • Dong ZZ, Yao M, Wang L, et al. Hypoxia-inducible factor-1alpha: molecular-targeted therapy for hepatocellular carcinoma. Mini Rev Med Chem. 2013 Jul;13(9):1295–1304.
  • Song Z, Liu T, Chen J, et al. HIF-1α-induced RIT1 promotes liver cancer growth and metastasis and its deficiency increases sensitivity to sorafenib. Cancer Lett. 2019 Sep 28;460:96–107.
  • Zhang Q, Bai X, Chen W, et al. Wnt/β-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1α signaling. Carcinogenesis. 2013 May;34(5):962–973.