1,709
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Bone mesenchymal stem cells (BMSCs)-derived exosomal microRNA-21-5p regulates Kruppel-like factor 3 (KLF3) to promote osteoblast proliferation in vitro

, , , , &
Pages 11933-11944 | Received 01 Nov 2021, Accepted 12 Apr 2022, Published online: 13 May 2022

References

  • Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359(9319):1761–1767.
  • Wang Y, Tao Y, Hyman ME, et al. Osteoporosis in China. Osteoporos Int. 2009;20(10):1651–1662.
  • Jones TL, Esa MS, Li KHC, et al. Osteoporosis, fracture, osteoarthritis & sarcopenia: a systematic review of circulating microRNA association. Bone. 2021;152:116068.
  • Jiang Y, Zhang P, Zhang X, et al. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Proliferation. 2021;54(1):e12956.
  • El-Derany MO, Noureldein MH. Bone marrow mesenchymal stem cells and their derived exosomes resolve doxorubicin-induced chemobrain: critical role of their miRNA cargo. Stem Cell Res Ther. 2021;12(1):322.
  • ELA S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–357.
  • Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.
  • Wei Y, Ma H, Zhou H, et al. miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF1-mediated Wnt/β-catenin axis. Aging (Albany NY). 2021;13(13):17190–17201.
  • Li L, Zhou X, Zhang JT, et al. Exosomal miR-186 derived from BMSCs promote osteogenesis through hippo signaling pathway in postmenopausal osteoporosis. J Orthop Surg Res. 2021;16(1):23.
  • Zhang Y, Cao X, Li P, et al. microRNA-935-modified bone marrow mesenchymal stem cells-derived exosomes enhance osteoblast proliferation and differentiation in osteoporotic rats. Life Sci. 2021;272:119204.
  • Lee KS, Lee J. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p. J Extracell Vesicles. 2021;10(12):e12152.
  • Wu D, Kang L, Tian J, et al. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe(3)O(4) nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomed. 2020;15:7979–7993.
  • Pearson RC, Funnell AP, Crossley M. The mammalian zinc finger transcription factor Krüppel-like factor 3 (KLF3/BKLF). IUBMB Life. 2011;63(2):86–93.
  • Dewi V, Kwok A, Lee S, et al. Phosphorylation of Krüppel-like factor 3 (KLF3/BKLF) and C-terminal binding protein 2 (CtBP2) by homeodomain-interacting protein kinase 2 (HIPK2) modulates KLF3 DNA binding and activity. J Biol Chem. 2015;290(13):8591–8605.
  • Sue N, Jack BH, Eaton SA, et al. Targeted disruption of the basic Krüppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol. 2008;28(12):3967–3978.
  • Himeda CL, Ranish JA, Pearson RC, et al. KLF3 regulates muscle-specific gene expression and synergizes with serum response factor on KLF binding sites. Mol Cell Biol. 2010;30(14):3430–3443.
  • Kelsey L, Flenniken AM, Qu D, et al. ENU-induced mutation in the DNA-binding domain of KLF3 reveals important roles for KLF3 in cardiovascular development and function in mice. PLoS Genet. 2013;9(7):e1003612.
  • Yang M, Guo Q, Peng H, et al. Krüppel-like factor 3 inhibition by mutated lncRNA Reg1cp results in human high bone mass syndrome. J Exp Med. 2019;216(8):1944–1964.
  • Chang J, Li H, Zhu Z, et al. microRNA-21-5p from M2 macrophage-derived extracellular vesicles promotes the differentiation and activity of pancreatic cancer stem cells by mediating KLF3. Cell Biol Toxicol. 2021. DOI:10.1007/s10565-021-09597-x.
  • Yang X, Yang J, Lei P, et al. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11(20):8777–8791.
  • Zhang J, Chen C, Hu B, et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int J Biol Sci. 2016;12(12):1472–1487.
  • Hou K, Li G, Zhao J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17(1):46.
  • Li Z, Qiu R, Qiu X, et al. SNHG6 promotes tumor growth via repression of P21 in colorectal cancer. Cell Physiol Biochem. 2018;49(2):463–478.
  • Niedermair T, Lukas C, Li S, et al. Influence of extracellular vesicles isolated from osteoblasts of patients with cox-arthrosis and/or osteoporosis on metabolism and osteogenic differentiation of BMSCs. Front Bioeng Biotechnol. 2020;8:615520.
  • Liu L, Zhu Y, Xu Y, et al. Melatonin delays cell proliferation by inducing G1 and G2 /M phase arrest in a human osteoblastic cell line hFOB 1.19. J Pineal Res. 2011;50(2):222–231.
  • Jia G, Liang C, Li W, et al. MiR-410-3p facilitates angiotensin II-induced cardiac hypertrophy by targeting Smad7. Bioengineered. 2022;13(1):119–127.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.
  • Erkisa M, Sariman M, Geyik OG, et al. Natural products as a promising therapeutic strategy to target cancer stem cells. Curr Med Chem. 2022;29(4): 741–783.
  • Wang Z, Wu Y, Zhao Z, et al. Study on transorgan regulation of intervertebral disc and extra-skeletal organs through exosomes derived from bone marrow mesenchymal stem cells. Front Cell Dev Biol. 2021;9:741183.
  • Xie L, Zeng Y. Therapeutic potential of exosomes in pulmonary fibrosis. Front Pharmacol. 2020;11:590972.
  • Shen D, He Z. Mesenchymal stem cell-derived exosomes regulate the polarization and inflammatory response of macrophages via miR-21-5p to promote repair after myocardial reperfusion injury. Ann Transl Med. 2021;9(16):1323.
  • He Q, Ye A, Ye W, et al. Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis. 2021;12(6):576.
  • Huang Y, Yang Y, Wang J, et al. miR-21-5p targets SKP2 to reduce osteoclastogenesis in a mouse model of osteoporosis. J Biol Chem. 2021;296:100617.
  • Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14.
  • Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–1207.
  • Zhang X, Deng F, Zhang Y, et al. PPARγ attenuates hepatic inflammation and oxidative stress of non‑alcoholic steatohepatitis via modulating the miR‑21‑5p/SFRP5 pathway. Mol Med Rep. 2021;24:5.
  • Tang J, Li X, Cheng T, et al. miR-21-5p/SMAD7 axis promotes the progress of lung cancer. Thorac Cancer. 2021;12(17):2307–2313.
  • Li J, Huang L, He Z, et al. Andrographolide suppresses the growth and metastasis of luminal-like breast cancer by inhibiting the NF-κB/miR-21-5p/PDCD4 signaling pathway. Front Cell Dev Biol. 2021;9:643525.
  • Guan E, Liu H, Xu N. Lidocaine Suppresses Gastric Cancer Development Through Circ_ANO5/miR-21-5p/LIFR Axis. Dig Dis Sci. 2021. DOI:10.1007/s10620-021-07055-6