2,175
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

MiR-4739 inhibits the malignant behavior of esophageal squamous cell carcinoma cells via the homeobox C10/vascular endothelial growth factor A/phosphatidylinositol 3-kinase/AKT pathway

, , , , , & show all
Pages 14064-14077 | Received 09 Feb 2022, Accepted 14 Apr 2022, Published online: 22 Jun 2022

References

  • Abnet CC, Arnold M, Wei W-Q. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154(2):360–373.
  • Huang J, Koulaouzidis A, Marlicz W, et al. Global burden, risk factors, and trends of esophageal cancer: an analysis of cancer registries from 48 countries. Cancers (Basel). 2021;13(1):E141.
  • Jaffe DH, Gricar J, DeCongelio M, et al. A global perspective in second-line treatment patterns for patients with advanced esophageal squamous cell carcinoma. Thorac Cancer. 2022;13(9):1240–1257.
  • Hong Z-N, Gao L, Weng K, et al. Safety and feasibility of esophagectomy following combined immunotherapy and chemotherapy for locally advanced esophageal squamous cell carcinoma: a propensity score matching analysis. Front Immunol. 2022;13:836338.
  • He Y, Liang D, Du L, et al. Clinical characteristics and survival of 5283 esophageal cancer patients: a multicenter study from eighteen hospitals across six regions in China. Cancer Commun (Lond). 2020;40(10):531–544.
  • Lang CCJ, Lloyd M, Alyacoubi S, et al. The Use of miRNAs in Predicting Response to Neoadjuvant Therapy in Oesophageal Cancer. Cancers (Basel). 2022;14(5):1171.
  • Cui D, Cheung AL. Roles of microRNAs in tumorigenesis and metastasis of esophageal squamous cell carcinoma. World J Clin Oncol. 2021;12(8):609–622.
  • Zarrilli G, Galuppini F, Angerilli V, et al. Fassan M. miRNAs involved in esophageal carcinogenesis and mirna-related therapeutic perspectives in esophageal carcinoma. Int J Mol Sci. 2021;22(7):3640.
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222.
  • Zheng D, Huang X, Peng J, et al. CircMYOF triggers progression and facilitates glycolysis via the VEGFA/PI3K/AKT axis by absorbing miR-4739 in pancreatic ductal adenocarcinoma. Cell Death Discov. 2021;7(1):362.
  • Gu Y, Wan C, Zhou G, et al. TYMSOS drives the proliferation, migration, and invasion of gastric cancer cells by regulating ZNF703 via sponging miR-4739. Cell Biol Int. 2021;45(8):1710–1719.
  • Wang X, Chen Q, Wang X, et al. ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of prostate cancer by sponging miR-4739 to upregulate MEF2D. Biomed Pharmacother. 2020;122:109557.
  • Smolarz B, Durczyński A, Romanowicz H, et al. miRNAs in cancer (Review of literature). Int J Mol Sci. 2022;23(5):2805.
  • Gabellini D, Colaluca IN, Vodermaier HC, et al. Early mitotic degradation of the homeoprotein HOXC10 is potentially linked to cell cycle progression. EMBO J. 2003;22(14):3715–3724.
  • Logan M, Tabin CJ. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science. 1999;283(5408):1736–1739.
  • Lee JS, Chae S, Nan J, et al. SENP2 suppresses browning of white adipose tissues by de-conjugating SUMO from C/EBPβ. Cell Rep. 2022;38(8):110408.
  • Tan HYA, Sim MFM, Tan S-X, et al. HOXC10 suppresses browning to maintain white adipocyte identity. Diabetes. 2021;70(8):1654–1663.
  • Wu Y, Wang G, Scott SA, et al. Hoxc10 and Hoxd10 regulate mouse columnar, divisional and motor pool identity of lumbar motoneurons. Development. 2008;135(1):171–182.
  • Guan Y, He Y, Lv S, et al. Overexpression of HOXC10 promotes glioblastoma cell progression to a poor prognosis via the PI3K/AKT signalling pathway. J Drug Target. 2019;27(1):60–66.
  • Suo D, Wang Z, Li L, et al. HOXC10 upregulation confers resistance to chemoradiotherapy in ESCC tumor cells and predicts poor prognosis. Oncogene. 2020;39(32):5441–5454.
  • Dang Y, Chen J, Feng W, et al. Interleukin 1β-mediated HOXC10 overexpression promotes hepatocellular carcinoma metastasis by upregulating PDPK1 and VASP. Theranostics. 2020;10(8):3833–3848.
  • Guerra SL, Maertens O, Kuzmickas R, et al. A deregulated HOX gene axis confers an epigenetic vulnerability in KRAS-mutant lung cancers. Cancer Cell. 2020;37:705–719.e6.
  • Miao Y, Zhang W, Liu S, et al. HOXC10 promotes growth and migration of melanoma by regulating slug to activate the YAP/TAZ signaling pathway. Discov Oncol. 2021;12(1):12
  • Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol. 2014;4:64.
  • Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019;59:125–132.
  • Garcia J, Hurwitz HI, Sandler AB, et al. Bevacizumab (Avastin®) in cancer treatment: a review of 15 years of clinical experience and future outlook. Cancer Treat Rev. 2020;86:102017.
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108.
  • Asaga S, Kuo C, Nguyen T, et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57(1):84–91.
  • Maynard JP, Lu J, Vidal I, et al. P2X4 purinergic receptors offer a therapeutic target for aggressive prostate cancer. J Pathol. 2022;256(2):149–163.
  • Huang C, Li R, Yang C, et al. PAX8-AS1 knockdown facilitates cell growth and inactivates autophagy in osteoblasts via the miR-1252-5p/GNB1 axis in osteoporosis. Exp Mol Med. 2021;53(5):894–906.
  • Kong Y, Feng Z, Chen A, et al. The natural flavonoid galangin elicits apoptosis, pyroptosis, and autophagy in glioblastoma. Front Oncol. 2019;9:942.
  • Shukla A, Trivedi SP. An in vitro analysis of the rat C6 glioma cells to elucidate the linear alkylbenzene sulfonate induced oxidative stress and consequent G2/M phase cell cycle arrest and cellular apoptosis. Chemosphere. 2018;205:443–451.
  • Luo G-C, Chen L, Fang J, et al. Hsa_circ_0030586 promotes epithelial-mesenchymal transition in prostate cancer via PI3K-AKT signaling. Bioengineered. 2021;12(2):11089–11107.
  • Wang W, Wu J, Dai X, et al. Inhibitory effect of CC chemokine ligand 23 (CCL23)/ transcription factor activating enhancer binding protein 4 (TFAP4) on cell proliferation, invasion and angiogenesis in hepatocellular carcinoma. Bioengineered. 2022;13(1):1626–1636.
  • Li L, Qi C, Liu Y, et al. MicroRNA miR-27b-3p regulate microglial inflammation response and cell apoptosis by inhibiting A20 (TNF-α-induced protein 3). Bioengineered. 2021;12(2):9902–9913.
  • Phatak P, Donahue JM. Biotinylated micro-RNA pull down assay for identifying miRNA Targets. Biol Protoc. 2017;7(9):e2253.
  • Nikhil K, Haymour HS, Kamra M, et al. Phosphorylation-dependent regulation of SPOP by LIMK2 promotes castration-resistant prostate cancer. Br J Cancer. 2021;124(5):995–1008.
  • Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20(8):460–469.
  • Ghasabi M, Mansoori B, Mohammadi A, et al. MicroRNAs in cancer drug resistance: basic evidence and clinical applications. J Cell Physiol. 2019;234(3):2152–2168.
  • Liu B, Li X, Li C, et al. miR-25 mediates metastasis and epithelial-mesenchymal-transition in human esophageal squamous cell carcinoma via regulation of E-cadherin signaling. Bioengineered. 2019;10(1):679–688.
  • Suyal G, Pandey P, Saraya A, et al. Tumour suppressor role of microRNA-335-5p in esophageal squamous cell carcinoma by targeting TTK (Mps1). Exp Mol Pathol. 2022;124:104738.
  • Delić D, Eisele C, Schmid R, et al. Urinary exosomal miRNA signature in type II diabetic nephropathy patients. PLoS One. 2016;11(3):e0150154.
  • J-Y L, Cheng B, Wang X-F, et al. Circulating microrna-4739 may be a potential biomarker of critical limb ischemia in patients with diabetes. Biomed Res Int. 2018;2018:4232794.
  • Elsafadi M, Manikandan M, Alajez NM, et al. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3. Stem Cell Res. 2017;20:94–104.
  • Chiarella E, Aloisio A, Scicchitano S, et al. Regulatory role of microRNAs targeting the transcription co-factor ZNF521 in normal tissues and cancers. Int J Mol Sci. 2021;22(16):8461.
  • Fang J, Wang J, Yu L, et al. Role of HOXC10 in Cancer. Front Oncol. 2021;11:684021.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–1264.
  • Song F, Hu B, Cheng J-W, et al. Anlotinib suppresses tumor progression via blocking the VEGFR2/PI3K/AKT cascade in intrahepatic cholangiocarcinoma. Cell Death Dis. 2020;11(7):573.
  • Ofek P, Tiram G, Satchi-Fainaro R. Angiogenesis regulation by nanocarriers bearing RNA interference. Adv Drug Deliv Rev. 2017;119:3–19.