1,549
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Dexpanthenol attenuates inflammatory damage and apoptosis in kidney and liver tissues of septic mice

, &
Pages 11625-11635 | Received 10 Feb 2022, Accepted 22 Apr 2022, Published online: 05 May 2022

References

  • David S, Brunkhorst FM. [Sepsis-3: what has been confirmed in therapy?]. Internist (Berl). 2017;58(12):1264–1271.
  • Suarez De La Rica A, Gilsanz F, Maseda E. Epidemiologic trends of sepsis in western countries. Ann Transl Med. 2016;4(17):325.
  • Cohen J, Vincent JL, Adhikari NK, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15(5):581–614.
  • O’Leary MM, Taylor J, Eckel L. Psychopathic personality traits and cortisol response to stress: the role of sex, type of stressor, and menstrual phase. Horm Behav. 2010;58(2):250–256.
  • D’Elia RV, Harrison K, Oyston PC, et al. Targeting the “cytokine storm” for therapeutic benefit. Clin Vaccine Immunol. 2013;20(3):319–327.
  • Cao C, Yu M, Chai Y. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis. 2019;10(10):782.
  • Sun J, Zhang J, Wang X, et al. Gut-liver crosstalk in sepsis-induced liver injury. Crit Care. 2020;24(1):614.
  • Wang Z, Yang X, Qin T, et al. Efficient removal of oxytetracycline from aqueous solution by a novel magnetic clay-biochar composite using natural attapulgite and cauliflower leaves. Environ Sci Pollut Res Int. 2019;26(8):7463–7475.
  • Bilgic Y, Akbulut S, Aksungur Z, et al. Protective effect of dexpanthenol against cisplatin-induced hepatotoxicity. Exp Ther Med. 2018;16(5):4049–4057.
  • Altintas R, Parlakpinar H, Beytur A, et al. Protective effect of dexpanthenol on ischemia-reperfusion-induced renal injury in rats. Kidney Blood Press Res. 2012;36(1):220–230.
  • Aydin O, Pehlivanli F, Karaca G, et al. May dexpanthenol, platelet-rich plasma, and thymoquinone provide new hope to maintain liver regeneration after partial hepatectomy? Turk J Gastroenterol. 2019;30(9):826–834.
  • Kose A, Parlakpinar H, Ozhan O, et al. Therapeutic effects of dexpanthenol on the cardiovascular and respiratory systems following cecal ligation and puncture-induced sepsis in rats. Biotech Histochem. 2020;95(6):428–437.
  • Rittirsch D, Huber-Lang MS, Flierl MA, et al. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4(1):31–36.
  • Wang C, Yuan W, Hu A, et al. Dexmedetomidine alleviated sepsis induced myocardial ferroptosis and septic heart injury. Mol Med Rep. 2020;22(1):175–184.
  • Li-Mei W, Jie T, Shan-He W, et al. Anti-inflammatory and anti-oxidative effects of dexpanthenol on lipopolysaccharide induced acute lung injury in mice. Inflammation. 2016;39(5):1757–1763.
  • Xiao Z, Kong B, Fang J, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered. 2021;12(2):9367–9376.
  • Wu Y, Zhao M, Lin Z. Pyrroloquinoline quinone (PQQ) alleviated sepsis-induced acute liver injury, inflammation, oxidative stress and cell apoptosis by downregulating CUL3 expression. Bioengineered. 2021;12(1):2459–2468.
  • Seibert FS, Sitz M, Passfall J, et al. Prognostic value of urinary calprotectin, NGAL and KIM-1 in chronic kidney disease. Kidney Blood Press Res. 2018;43(4):1255–1262.
  • Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 2019;20(21):5376.
  • Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–874.
  • Ayala A, Perl M, Venet F, et al. Apoptosis in sepsis: mechanisms, clinical impact and potential therapeutic targets. Curr Pharm Des. 2008;14(19):1853–1859.
  • Yan J, Li S, Li S. The role of the liver in sepsis. Int Rev Immunol. 2014;33(6):498–510.
  • Poston JT, Koyner JL. Sepsis associated acute kidney injury. BMJ. 2019;364:k4891.
  • Alverdy JC, Keskey R, Thewissen R. Can the cecal ligation and puncture model be repurposed to better inform therapy in human sepsis? Infect Immun. 2020;88(9):e00942–19.
  • Hawiger J, Veach RA, Zienkiewicz J. New paradigms in sepsis: from prevention to protection of failing microcirculation. J Thromb Haemost. 2015;13(10):1743–1756.
  • Zhu T, Liao X, Feng T, et al. Plasma monocyte chemoattractant protein 1 as a predictive marker for sepsis prognosis: a prospective cohort study. Tohoku J Exp Med. 2017;241(2):139–147.
  • Hong TH, Chang CH, Ko WJ, et al. Biomarkers of early sepsis may be correlated with outcome. J Transl Med. 2014;12:146.
  • Holub M, Dzupova O, Ruzkova M, et al. Selected biomarkers correlate with the origin and severity of sepsis. Mediators Inflamm. 2018;2018:7028267.
  • Maiese A, Bolino G, Mastracchio A, et al. An immunohistochemical study of the diagnostic value of TREM-1 as marker for fatal sepsis cases. Biotech Histochem. 2019;94(3):159–166.
  • La Russa R, Maiese A, Viola RV, et al. Searching for highly sensitive and specific biomarkers for sepsis: state-of-the-art in post-mortem diagnosis of sepsis through immunohistochemical analysis. Int J Immunopathol Pharmacol. 2019;33:2058738419855226.
  • Thieme U, Muller K, Bergmann C, et al. Randomised trial on performance, safety and clinical benefit of hyaluronic acid, hyaluronic acid plus dexpanthenol and isotonic saline nasal sprays in patients suffering from dry nose symptoms. Auris Nasus Larynx. 2020;47(3):425–434.
  • Ping F, Guo Y, Cao Y, et al. Metabolomics analysis of the renal cortex in rats with acute kidney injury induced by sepsis. Front Mol Biosci. 2019;6:152.
  • Dogan EE, Erkoc R, Ekinci I, et al. Protective effect of dexpanthenol against nephrotoxic effect of amikacin: an experimental study. Biomed Pharmacother. 2017;89:1409–1414.
  • Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–2543.
  • Supavekin S, Zhang W, Kucherlapati R, et al. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 2003;63(5):1714–1724.
  • Amin RP, Vickers AE, Sistare F, et al. Identification of putative gene based markers of renal toxicity. Environ Health Perspect. 2004;112(4):465–479.
  • Prozialeck WC, Vaidya VS, Liu J, et al. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int. 2007;72(8):985–993.
  • Schrezenmeier EV, Barasch J, Budde K, et al. Biomarkers in acute kidney injury - pathophysiological basis and clinical performance. Acta Physiol (Oxf). 2017;219(3):554–572.
  • Nogueira SAR, Oliveira SCS, Carvalho AFM, et al. Renal changes and acute kidney injury in covid-19: a systematic review. Rev Assoc Med Bras (1992). 2020;66(Suppl 2):112–7.0.
  • Lala V, Goyal A, Bansal P, et al. Liver function tests. Treasure Island (FL): StatPearls; 2021.
  • Koop AC, Thiele ND, Steins D, et al. Therapeutic targeting of myeloperoxidase attenuates NASH in mice. Hepatol Commun. 2020;4(10):1441–1458.
  • Tutun B, Elbe H, Vardi N, et al. Dexpanthenol reduces diabetic nephropathy and renal oxidative stress in rats. Biotech Histochem. 2019;94(2):84–91.
  • Slyshenkov VS, Rakowska M, Moiseenok AG, et al. Pantothenic acid and its derivatives protect Ehrlich ascites tumor cells against lipid peroxidation. Free Radic Biol Med. 1995;19(6):767–772.
  • Ye S, Zhou X, Lin J, et al. Asymmetric dimethylarginine induced apoptosis and dysfunction of endothelial progenitor cells: role of endoplasmic reticulum stress pathway. Biomed Res Int. 2017;2017:6395601.