1,253
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

MiR-106a facilitates the sensorineural hearing loss induced by oxidative stress by targeting connexin-43

&
Pages 14080-14093 | Received 27 Jan 2022, Accepted 23 Apr 2022, Published online: 22 Jun 2022

References

  • Wang DT, Ramakrishnaiah R, Kanfi A. Sensorineural hearing loss through the ages. Semin Roentgenol. 2019;54(3):207–214.
  • Cosh S, Helmer C, Delcourt C, et al. Depression in elderly patients with hearing loss: current perspectives. Clin Interv Aging. 2019;14:1471–1480.
  • Liu H, Zhou K, Zhang X, et al. Fluctuating sensorineural hearing loss. Audiol Neurootol. 2019;24(3):109–116.
  • Harkins J, Tucker P. An internet survey of individuals with hearing loss regarding assistive listening devices. Trends Amplif. 2007;11(2):91–100.
  • Celik M, Koyuncu İ. Oxidative stress in prelingual sensorineural hearing loss and the effects of cochlear implant application on serum oxidative stress levels. Int J Pediatr Otorhinolaryngol. 2019;119:177–182.
  • Niwa K, Matsunobu T, Kurioka T, et al. The beneficial effect of hangesha-shin-to (TJ-014) in gentamicin-induced hair cell loss in the rat cochlea. Auris Nasus Larynx. 2016;43(5):507–513.
  • Fujimoto C, Yamasoba T. Mitochondria-targeted antioxidants for treatment of hearing loss: a systematic review. Antioxidants (Basel). 2019;8(4). DOI:10.3390/antiox8040109
  • Umugire A, Lee S, Kim D, et al. Avenanthramide-C prevents noise- and drug-induced hearing loss while protecting auditory hair cells from oxidative stress. Cell Death Discov. 2019;5(1):115.
  • Elias T, Monsanto R, Do Amaral JB, et al. Evaluation of oxidative-stress pathway and recovery of sudden sensorineural hearing loss. Int Arch Otorhinolaryngol. 2021;25(3):e428–e432.
  • Sontheimer EJ. Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol. 2005;6(2):127–138.
  • Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8(1):23–36.
  • Li Q, Peng X, Huang H, et al. RNA sequencing uncovers the key microRNAs potentially contributing to sudden sensorineural hearing loss. Medicine (Baltimore). 2017;96(47):e8837.
  • Ebeid M, Sripal P, Pecka J, et al. Transcriptome-wide comparison of the impact of Atoh1 and miR-183 family on pluripotent stem cells and multipotent otic progenitor cells. PLoS One. 2017;12(7):e0180855.
  • Liu XZ, Xia XJ, Adams Joe, et al. Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet. 2001;10(25):2945–2951.
  • Kar R, Riquelme MA, Werner S, et al. Connexin 43 channels protect osteocytes against oxidative stress-induced cell death. J Bone Miner Res. 2013;28(7):1611–1621.
  • Wang JL, Li H, Zhang JB, et al. Suppression of connexin 43 expression by miR-106a promotes melanoma cell proliferation. Eur Rev Med Pharmacol Sci. 2019;23(3):965–971.
  • Kim HN, Chang MS, Chung MH, et al. Establishment of primary cell culture from stria vascularis explants. morphological and functional characterization. Acta Otolaryngol. 1996;116(6):805–811.
  • Zhao XY, Sun JL, Hu YJ, et al. The effect of overexpression of PGC-1α on the mtDNA4834 common deletion in a rat cochlear marginal cell senescence model. Hear Res. 2013;296:13–24.
  • Yao Q, Lin M, Wang Y, et al. Curcumin induces the apoptosis of A549 cells via oxidative stress and MAPK signaling pathways. Int J Mol Med. 2015;36(4):1118–1126.
  • Li J, Zhou Q, Liang Y, et al. miR-486 inhibits PM2.5-induced apoptosis and oxidative stress in human lung alveolar epithelial A549 cells. Ann Transl Med. 2018;6(11):209.
  • Ding X, Jian T, Wu Y, et al. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomed Pharmacother. 2019;110:85–94.
  • Li H, Lv B, Kong L, et al. Nova1 mediates resistance of rat pheochromocytoma cells to hypoxia-induced apoptosis via the Bax/Bcl-2/caspase-3 pathway. Int J Mol Med. 2017;40(4):1125–1133.
  • Sharma S, Umar S, Centala A, et al. Role of miR206 in genistein-induced rescue of pulmonary hypertension in monocrotaline model. J Appl Physiol. 1985;119(12):1374–1382. 2015.
  • Bhave S, Gade A, Kang M, et al. Connexin-purinergic signaling in enteric glia mediates the prolonged effect of morphine on constipation. FASEB J. 2017;31(6):2649–2660.
  • Muniak MA, Ayeni FE, Ryugo DK. Hidden hearing loss and endbulbs of held: evidence for central pathology before detection of ABR threshold increases. Hear Res. 2018;364:104–117.
  • Poirrier AL, Pincemail J, Van Den Ackerveken P, et al. Oxidative stress in the cochlea: an update. Curr Med Chem. 2010;17(30):3591–3604.
  • Gabaizadeh R, Staecker H, Liu W, et al. BDNF protection of auditory neurons from cisplatin involves changes in intracellular levels of both reactive oxygen species and glutathione. Brain Res Mol Brain Res. 1997;50(1–2):71–78.
  • Hao C, Wu X, Zhou R, et al. Downregulation of p66Shc can reduce oxidative stress and apoptosis in oxidative stress model of marginal cells of stria vascularis in Sprague Dawley rats. Drug Des Devel Ther. 2019;13:3199–3206.
  • Newsholme P, Cruzat VF, Keane KN, et al. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016;473(24):4527–4550.
  • Becatti M, Marcucci R, Mannucci A, et al. Erythrocyte membrane fluidity alterations in sudden sensorineural hearing loss patients: the role of oxidative stress. Thromb Haemost. 2017;117(12):2334–2345.
  • Dinc ME, Ulusoy S, Is A, et al. Thiol/disulphide homeostasis as a novel indicator of oxidative stress in sudden sensorineural hearing loss. J Laryngol Otol. 2016;130(5):447–452.
  • Lu Y, Luo Q, Cui H, et al. Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY). 2017;9(6):1623–1639.
  • Coles LD, Tuite PJ, Öz G, et al. Repeated-dose oral N-Acetylcysteine in parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol. 2018;58(2):158–167.
  • Ribeiro-Samora GA, Rabelo LA, Ferreira A, et al. Inflammation and oxidative stress in heart failure: effects of exercise intensity and duration. Braz J Med Biol Res. 2017;50(9):e6393.
  • McCord JM, Edeas MA. SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed Pharmacother. 2005;59(4):139–142.
  • Kumar S, Sitasawad SL. N-acetylcysteine prevents glucose/glucose oxidase-induced oxidative stress, mitochondrial damage and apoptosis in H9c2 cells. Life Sci. 2009;84(11–12):328–336.
  • Jiang P, Ray A, Rybak LP, et al. Role of STAT1 and oxidative stress in gentamicin-induced hair cell death in organ of corti. Otol Neurotol. 2016;37(9):1449–1456.
  • Chen H, Wijesinghe P, Nunez DA. MicroRNAs in acquired sensorineural hearing loss. J Laryngol Otol. 2019;133(8):650–657.
  • Pang J, Xiong H, Yang H, et al. Circulating miR-34a levels correlate with age-related hearing loss in mice and humans. Exp Gerontol. 2016;76:58–67.
  • Rudnicki A, Avraham KB. microRNAs: the art of silencing in the ear. EMBO Mol Med. 2012;4(9):849–859.
  • Ha SM, Hwang KR, Park IH, et al. Circulating microRNAs as potentially new diagnostic biomarkers of idiopathic sudden sensorineural hearing loss. Acta Otolaryngol. 2020;140(12):1013–1020.
  • He X, Zeng X. LncRNA SNHG16 aggravates high glucose-induced podocytes injury in diabetic nephropathy through targeting mir-106a and thereby up-regulating KLF9. Diabetes Metab Syndr Obes. 2020;13:3551–3560.
  • Yang XZ, Cheng TT, He QJ, et al. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway. Mol Cancer. 2018;17(1):126.
  • Guo Y, Liu Z, Wang M. NFKB1-mediated downregulation of microRNA-106a promotes oxidative stress injury and insulin resistance in mice with gestational hypertension. Cytotechnology. 2021;73(1):115–126.
  • Hu Y, Xu R, He Y, et al. Downregulation of microRNA‑106a‑5p alleviates ox‑LDL‑mediated endothelial cell injury by targeting STAT3. Mol Med Rep. 2020;22(2):783–791.
  • Wu Y, Xu D, Zhu X, et al. MiR-106a associated with diabetic peripheral neuropathy through the regulation of 12/15-LOX-meidiated oxidative/nitrative stress. Curr Neurovasc Res. 2017;14(2):117–124.
  • Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996;65(1):475–502.
  • Zhang J, Wang X, Hou Z, et al. Suppression of connexin 43 leads to strial vascular hyper-permeability, decrease in endocochlear potential, and mild hearing loss. Front Physiol. 2020;11:974.
  • Wang J, Song Q. Inhibition of connexin 43 induces hearing loss in postnatal mice. Physiol Int. 2021. DOI:10.1556/2060.2021.00008
  • Shin KT, Nie ZW, Zhou W, et al. Connexin 43 knockdown induces mitochondrial dysfunction and affects early developmental competence in porcine embryos. Microsc Microanal. 2020;26(2):287–296.