2,169
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanocellulose in tissue engineering and bioremediation: mechanism of action

, , , , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 12823-12833 | Received 17 Mar 2022, Accepted 02 May 2022, Published online: 24 May 2022

References

  • Albalawi F, Fakurazi S. Engineered nanomaterials : the challenges and opportunities for nanomedicines. Int J Nanomedicine. 2022;16:161–184.
  • Lin N, Dufresne A. Nanocellulose in biomedicine : current status and future prospect. Eur Polym J Internet]. 2014;59:302–325.
  • Nasir M, Hashim R, Sulaiman O, et al. Nanocellulose: preparation methods and applications [Internet. In: Mohammad J, Sami B, Abdul K, editors. Cellulose-reinforced nanofibre composites: production, properties and applications. Elsevier Ltd; 2017. p. 261–276. DOI:10.1016/B978-0-08-100957-4.00011-5.
  • Abraham E, Deepa B, Pothan LA, et al. Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym. 2011 Oct 15;86(4):1468–1475.
  • Klemm D, Heublein B, Fink HP, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie. 2005 May 30;44(22):3358–3393.
  • Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010 Jun 9;110(6):3479–3500.
  • Habibi Y. Key advances in the chemical modification of nanocelluloses. Chem Soc Rev. 2014;43(5):1519–1542.
  • Yadav SK editor. Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration. Springer: Berlin Germany. Jun 4. 2016.
  • Thomas B, Raj MC, Joy J, et al. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev. 2018 Nov 7;118(24):11575–11625.
  • Gray D. Nanocellulose: from nature to high performance tailored material. Holzforschung. 2013 Apr 1;67(3):353.
  • Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: a new family of nature‐based materials. Angewandte Chemie. 2011 Jun 6;50(24):5438–5466.
  • Reshmy R, Philip E, Thomas D, et al. Bacterial nanocellulose: engineering, production, and applications. Bioengineered. 2021;12(2):11463.
  • Lu P, Hsieh YL. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym. 2012 Jan 4;87(1):564–573.
  • Lavoine N, Desloges I, Dufresne A, et al. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym. 2012 Oct 1;90(2):735–764.
  • Jiang F, Hsieh YL. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym. 2013 Jun 5;95(1):32–40.
  • Khalil HA, Bhat AH, Yusra AI. Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym. 2012 Jan 15;87(2):963–979.
  • Singhania RR, Patel AK, Tsai ML, et al. Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered. 2021 Jan 1;12(1):6793–6807.
  • Khalil HA, Davoudpour Y, Islam MN, et al. Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym. 2014 Jan 2;99:649–665.
  • Huong DT, Liu BL, Chai WS, et al. Highly efficient dye removal and lysozyme purification using strong and weak cation-exchange nanofiber membranes. Int J Biol Macromol. 2020 Dec 15;165:1410–1421.
  • Henriksson M, Berglund LA. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci. 2007 Nov 15;106(4):2817–2824.
  • Chen YS, Ooi CW, Show PL, et al. Removal of ionic dyes by nanofiber membrane functionalized with chitosan and egg white proteins: membrane preparation and adsorption efficiency. Membranes (Basel). 2022 Jan;12(1):63.
  • Ratcliffe A. Tissue engineering of vascular grafts. Matrix Biol. 2000 Aug 1;19(4):353–357.
  • Hubbell JA, Massia SP, Desai NP, et al. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Bio/technology. 1991 Jun;9(6):568–572.
  • Li J, Wei X, Wang Q, et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym. 2012 Nov 6;90(4):1609–1613.
  • Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 2010 Jun;17(3):459–494.
  • Ferrer A, Filpponen I, Rodríguez A, et al. Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol. 2012 Dec 1;125:249–255.
  • Chakraborty A, Sain M, Kortschot M. Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Wood Res Technol. 2005;59:102–107.
  • Roman M, Winter WT. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules. 2004 Sep 13;5(5):1671–1677.
  • Hebeish A, Guthrie TJ. The chemistry and technology of cellulosic copolymers. Berlin, New York: Springer Science & Business Media; 2012 Dec 6.
  • de la Motte H, Hasani M, Brelid H, et al. Molecular characterization of hydrolyzed cationized nanocrystalline cellulose, cotton cellulose and softwood Kraft pulp using high resolution 1D and 2D NMR. Carbohydr Polym. 2011 Jul 1;85(4):738–746.
  • Czaja W, Kyryliouk D, DePaula CA, et al. Oxidation of γ‐irradiated microbial cellulose results in bioresorbable, highly conformable biomaterial. J Appl Polym Sci. 2014 Mar 15;131(6). DOI:10.1002/app.39995.
  • Leitão AF, Gupta S, Silva JP, et al. Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite. Colloids Surf B Biointerfaces. 2014;111:493–502.
  • Luo H, Cha R, Li J, et al. Advances in tissue engineering of nanocellulose-based scaffolds: a review. Carbohydr Polym. 2019 Nov 15;224: 115144.
  • Bacakova L, Pajorova J, Bacakova M, et al. Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomaterials. 2019 Feb;9(2):164.
  • Liu J, Morales-Narváez E, Vicent T, et al. Microorganism-decorated nanocellulose for efficient diuron removal. Chem Eng J. 2018 Dec 15;354:1083–1091.
  • Soriano ML, Ruiz‐Palomero C. Nanocellulose as promising material for environmental applications. Nanotechnol Environ Sci. 2018 Apr;4:579–598.
  • Kardam A, Raj KR, Srivastava S. Green nanotechnology for bioremediation of toxic metals from waste water. In: InChemistry of phytopotentials: health, energy and environmental perspectives. Berlin Heidelberg: Springer; 2012. p. 373–377.
  • AI-Jawhari IF. Nanocellulose for sustainable future applications. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications.Cham; Springer;2020. p. 1–2.
  • Athukoralalage SS, Balu R, Dutta NK, et al. 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: a brief review. Polymers. 2019 May;11(5):898.
  • Fu L, Zhang Y, Li C, et al. Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem. 2012;22(24):12349–12357.
  • Priya SG, Jungvid H, Kumar A. Skin tissue engineering for tissue repair and regeneration. Tissue Eng Part B Rev. 2008 Mar 1;14(1):105–118.
  • Groeber F, Holeiter M, Hampel M, et al. Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliv Rev. 2011 Apr 30;63(4–5):352–366.
  • Wei Z, Wu C, Li R, et al. Nanocellulose based hydrogel or aerogel scaffolds for tissue engineering. Cellulose. 2021 Aug;28(12):7497–7520.
  • Xu X, Zhou J, Jiang Y, et al. 3D printing process of oxidized nanocellulose and gelatin scaffold. J Biomater Sci Polym Ed. 2018 Aug 13;29(12):1498–1513.
  • Tortorella S, Maturi M, Dapporto F, et al. Surface modification of nanocellulose through carbamate link for a selective release of chemotherapeutics. Cellulose. 2020 Oct;27(15):8503–8511.
  • Stanisławska A, Staroszczyk H, Szkodo M. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Carbohydr Polym. 2020 May 15;236:116023.
  • Ghafari R, Jonoobi M, Amirabad LM, et al. Fabrication and characterization of novel bilayer scaffold from nanocellulose based aerogel for skin tissue engineering applications. Int J Biol Macromol. 2019 Sep 1;136:796–803.
  • Pramanik R, Ganivada B, Ram F, et al. Influence of nanocellulose on mechanics and morphology of polyvinyl alcohol xerogels. J Mech Behav Biomed Mater. 2019 Feb 1;90:275–283.
  • Luo H, Li J, Zhou F. Advances in hard tissue engineering materials—nanocellulose-based composites. Paper Biomater. 2018;3(4):62–76.
  • Ghorbani M, Nezhad-Mokhtari P, Sohrabi H, et al. Electrospun chitosan/nanocrystalline cellulose-graft-poly (N-vinylcaprolactam) nanofibers as the reinforced scaffold for tissue engineering. J Mater Sci. 2020 Feb;55(5):2176–2185.
  • Pooyan P, Kim IT, Jacob KI, et al. Design of a cellulose-based nanocomposite as a potential polymeric scaffold in tissue engineering. Polymer. 2013 Apr 3;54(8):2105–2114.
  • Chen Q, de Larraya UP, Garmendia N, et al. Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes. Colloids Surf B Biointerfaces. 2014 Jun 1;118:41–48.
  • He X, Xiao Q, Lu C, et al. Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules. 2014 Feb 10;15(2):618–627.
  • Mali P, Sherje AP. Cellulose nanocrystals: fundamentals and biomedical applications. Carbohydr Polym. 2022 Jan 1;275:118668.
  • Huang C, Hao N, Bhagia S, et al. Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose. Materialia. 2018 Dec 1;4:237–246.
  • Herdocia-Lluberes CS, Laboy-López S, Morales S, et al. Evaluation of synthesized nanohydroxya patite-nanocellulose composites as biocompatible scaffolds for applications in bone tissue engineering. J Nanomater. 2015 Dec 27;2015:1–9.
  • Huang C, Fang G, Zhao Y, et al. Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix. Carbohydr Polym. 2019 Oct 15;222:115036.
  • Reshmy R, Philip E, Madhavan A, et al. Nanocellulose as green material for remediation of hazardous heavy metal contaminants. J Hazard Mater. 2022 Feb 15;424:127516.
  • Liu P, Oksman K, Mathew AP. Surface adsorption and self-assembly of Cu (II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci. 2016 Feb 15;464:175–182.
  • Fiorati A, Grassi G, Graziano A, et al. Eco-design of nanostructured cellulose sponges for sea-water decontamination from heavy metal ions. J Clean Prod. 2020 Feb 10;246:119009.
  • Azeez NA, Dash SS, Gummadi SN, et al. Nano-remediation of toxic heavy metal contamination: hexavalent chromium [Cr (VI)]. Chemosphere. 2021 Mar 1;266:129204.
  • Ramírez Calderón OA, Abdeldayem OM, Pugazhendhi A, et al. Current updates and perspectives of biosorption technology: an alternative for the removal of heavy metals from wastewater. Curr Poll Rep. 2020 Mar;6(1):8–27.
  • Qiu S, Wang L, Champagne P, et al. Effects of crystalline nanocellulose on wastewater-cultivated microalgal separation and biomass composition. Appl Energy. 2019 Apr 1;239:207–217.
  • Dufresne A. Nanocellulose: a new ageless bionanomaterial. Mater Today. 2013 Jun 1;16(6):220–227.
  • Wu Y, Sun S, Geng A, et al. Using TEMPO-oxidized-nanocellulose stabilized carbon nanotubes to make pigskin hydrogel conductive as flexible sensor and supercapacitor electrode: inspired from a Chinese cuisine. Compos Sci Technol. 2020 Aug 18;196:108226.
  • Han J, Wang S, Zhu S, et al. Electrospun core–shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness. ACS Appl Mater Interfaces. 2019 Nov 7;11(47):44624–44635.
  • Safari S, van de Ven TG. Effect of water vapor adsorption on electrical properties of carbon nanotube/nanocrystalline cellulose composites. ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9483–9489.