1,202
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Asiatic acid re-sensitizes multidrug-resistant A549/DDP cells to cisplatin by down regulating long non-coding RNA metastasis associated lung adenocarcinoma transcript 1/β-catenin signaling

, , , &
Pages 12972-12984 | Received 15 Feb 2022, Accepted 15 May 2022, Published online: 24 May 2022

References

  • Nakagawa T, Endo H, Yokoyama M, et al. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun. 2013;436:319–324.
  • Wang L, Zhang X, Liu Y, et al. Long noncoding RNA FBXL19-AS1 induces tumor growth and metastasis by sponging miR-203a-3p in lung adenocarcinoma. J Cell Physiol. 2020;235:3612–3625.
  • Fang Z, Chen W, Yuan Z, et al. LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed Pharmacother. 2018;101:536–542.
  • Kypta RM, Waxman J. Wnt/β-catenin signalling in prostate cancer. Nat Rev Urol. 2012;9:418–428.
  • Zhang Y, Zhang Q, Chen H, et al. BCL9 promotes epithelial mesenchymal transition and invasion in cisplatin resistant NSCLC cells via β-catenin pathway. Life Sci. 2018;208:284–294.
  • Zhao H, Wei W, Sun Y, et al. Interference with the expression of β-catenin reverses cisplatin resistance in A2780/DDP cells and inhibits the progression of ovarian cancer in mouse model. DNA Cell Biol. 2015;34:55–62.
  • Wang Y, Wang Y, Qin Z, et al. The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol. 2021;17:291–306.
  • Yamada T, Takaoka AS, Naishiro Y, et al. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res. 2000;60:4761–4766.
  • Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: its physiological and pathophysiological functions. RNA Biol. 2017;14:1705–1714.
  • Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–8041.
  • Tano K, Mizuno R, Okada T, et al. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett. 2010;584:4575–4580.
  • Fan C, Yuan Q, Liu G, et al. Long non-coding RNA MALAT1 regulates oxaliplatin-resistance via miR-324-3p/ADAM17 axis in colorectal cancer cells. Cancer Cell Int. 2020;20:473.
  • Du B, Wang J, Zang S, et al. Long non-coding RNA MALAT1 suppresses the proliferation and migration of endothelial progenitor cells in deep vein thrombosis by regulating the Wnt/β-catenin pathway. Exp Ther Med. 2020;20:3138–3146.
  • Zheng X, Ren J, Peng B, et al. MALAT1 overexpression promotes the growth of colon cancer by repressing β-catenin degradation. Cell Signal. 2020;73:109676.
  • Hao C, Wu B, Hou Z, et al. Asiatic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts. Int Immunopharmacol. 2017;50:313–318.
  • Zhao C, Qiao X, Shao Q, et al. Evolution of the lignin chemical structure during the bioethanol production process and its inhibition to enzymatic hydrolysis. Energy Fuels. 2020;34:5938–5947.
  • Li J, Chen K, Huang J, et al. Asiatic acid induces endoplasmic reticulum stress and activates the Grp78/IRE1α/JNK and calpain pathways to inhibit tongue cancer growth. Front Pharmacol. 2021;12:690612.
  • Gou XJ, Bai HH, Liu LW, et al. Asiatic acid interferes with invasion and proliferation of breast cancer cells by inhibiting WAVE3 activation through PI3K/AKT signaling pathway. Biomed Res Int. 2020;2020:1874387.
  • Cui Q, Ren J, Zhou Q, et al. Effect of asiatic acid on epithelial-mesenchymal transition of human alveolar epithelium A549 cells induced by TGF-β1. Oncol Lett. 2019;17:4285–4292.
  • Sakonsinsiri C, Kaewlert W, Armartmuntree N, et al. Anti-cancer activity of asiatic acid against human cholangiocarcinoma cells through inhibition of proliferation and induction of apoptosis. Cell Mol Biol (Noisy-le-grand). 2018;64:28–33.
  • Islam MT, Ali ES, Uddin SJ, et al. Anti-cancer effects of asiatic acid, a triterpene from centilla asiatica L: a review. Anticancer Agents Med Chem. 2020;20:536–547.
  • Xue VW, Chung JY, Córdoba CAG, et al. Transforming growth factor-β: a multifunctional regulator of cancer immunity. Cancers (Basel). 2020;12:3099.
  • Wu W, Yang JL, Wang YL, et al. Reversal of multidrug resistance of hepatocellular carcinoma cells by metformin through inhibiting NF-κB gene transcription. World J Hepatol. 2016;8:985–993.
  • Liu YT, Chuang YC, Lo YS, et al. Asiatic acid, extracted from centella asiatica and induces apoptosis pathway through the phosphorylation p38 mitogen-activated protein kinase in cisplatin-resistant nasopharyngeal carcinoma cells. Biomolecules. 2020;10:184.
  • Xu J, Chen Z, Fang Z, et al. Long non-coding RNA OIP5-AS1 promotes the progression of esophageal cancer by regulating miR-30a/VOPP1 expression. Oncol Lett. 2021;22:651.
  • Zhang J, Hu Z, Wen C, et al. MicroRNA-182 promotes epithelial-mesenchymal transition by targeting FOXN3 in gallbladder cancer. Oncol Lett. 2021;21:200.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408.
  • Huang J, Chen Z, Lai Z, et al. Kaempferol ameliorates the regulatory effects of PVT1/miR-214 on epithelial-mesenchymal transition through the PAK4/β-catenin axis in SRA01/04 cells. Future Med Chem. 2021;13:613–623.
  • Yang J, Zhang K, Wu J, et al. Wnt5a increases properties of lung cancer stem cells and resistance to cisplatin through activation of Wnt5a/PKC signaling pathway. Stem Cells Int. 2016;2016:1690896.
  • Yang D, Feng W, Zhuang Y, et al. Long non-coding RNA linc00665 inhibits CDKN1C expression by binding to EZH2 and affects cisplatin sensitivity of NSCLC cells. Mol Ther Nucleic Acids. 2021;23:1053–1065.
  • Syllaios A, Moris D, Karachaliou GS, et al. Pathways and role of MALAT1 in esophageal and gastric cancer. Oncol Lett. 2021;21:343.
  • Wang D, Zhang S, Zhao M, et al. LncRNA MALAT1 accelerates non-small cell lung cancer progression via regulating miR-185-5p/MDM4 axis. Cancer Med. 2020;9:9138–9149.
  • Wang Y, Zhang Q. Long noncoding RNA MALAT1 knockdown inhibits proliferation, migration, and invasion and promotes apoptosis in non-small-cell lung cancer cells through regulating miR-515-3p/TRIM65 axis. Cancer Biother Radiopharm. 2020. DOI:10.1089/cbr.2020.3730
  • Garg M, Maurya N. WNT/β-catenin signaling in urothelial carcinoma of bladder. World J Nephrol. 2019;8:83–94.
  • Liu L, Zhu H, Liao Y, et al. Inhibition of Wnt/β-catenin pathway reverses multi-drug resistance and EMT in Oct4(+)/Nanog(+) NSCLC cells. Biomed Pharmacother. 2020;127:110225.
  • Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13:165.
  • Liu Y, Zhuang H, Cao F, et al. Shc3 promotes hepatocellular carcinoma stemness and drug resistance by interacting with β-catenin to inhibit its ubiquitin degradation pathway. Cell Death Dis. 2021;12:278.
  • Ke J, Gu C, Zhang H, et al. Nucleolin promotes cisplatin resistance in cervical cancer by the YB1-MDR1 pathway. J Oncol. 2021;2021:9992218.
  • Malleske DT, Hayes D Jr., Lallier SW, et al. Regulation of human airway epithelial tissue stem cell differentiation by β-catenin, P300, and CBP. Stem Cells. 2018;36:1905–1916.
  • Ono M, Lai KKY, Wu K, et al. Nuclear receptor/Wnt beta-catenin interactions are regulated via differential CBP/p300 coactivator usage. PLoS One. 2018;13:e0200714.
  • Sengupta S, Mantha AK, Mitra S, et al. Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1. Oncogene. 2011;30:482–493.
  • Gutiérrez-Salmerón M, García-Martínez JM, Martínez-Useros J, et al. Paradoxical activation of AMPK by glucose drives selective EP300 activity in colorectal cancer. Plos Biol. 2020;18:e3000732.
  • Wang Y, Lu C, Zhao X, et al. Antifungal activity and potential mechanism of asiatic acid alone and in combination with fluconazole against Candida albicans. Biomed Pharmacother. 2021;139:111568.
  • Kim KB, Kim K, Bae S, et al. MicroRNA-1290 promotes asiatic acid‑induced apoptosis by decreasing BCL2 protein level in A549 non‑small cell lung carcinoma cells. Oncol Rep. 2014;32:1029–1036.
  • Khare V, Tabassum S, Chatterjee U, et al. RNA helicase p68 deploys β-catenin in regulating RelA/p65 gene expression: implications in colon cancer. J Exp Clin Cancer Res. 2019;38:330.
  • Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–1473.
  • Elumalai P, Ezhilarasan D, Raghunandhakumar S. Quercetin inhibits the epithelial to mesenchymal transition through suppressing Akt mediated nuclear translocation of β-catenin in lung cancer cell line. Nutr Cancer. 2022;74:1894–1906.
  • Zhang Y, Jin D, Kang X, et al. Signaling pathways involved in diabetic renal fibrosis. Front Cell Dev Biol. 2021;9:696542.