1,599
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

microRNA-301a-3p is a potential biomarker in venous ulcers vein and gets involved in endothelial cell dysfunction

, , , &
Pages 14138-14158 | Received 21 Dec 2021, Accepted 24 May 2022, Published online: 23 Jun 2022

References

  • Marston WA, Crowner J, Kouri A, et al. Incidence of venous leg ulcer healing and recurrence after treatment with endovenous laser ablation. J Vasc Surg Venous Lymphat Disord. 2017 Jul;5(4):525–532.
  • Labropoulos N, Gasparis AP, Pefanis D, et al. Secondary chronic venous disease progresses faster than primary. J Vasc Surg. 2009 Mar;49(3):704–710.
  • Meer MH, Moneta G, Burnand K, et al. The hemodynamics and diagnosis of venous disease. J Vasc Surg. 2007 Dec;46:4S–24S.
  • Labropoulos N, Leon M, Nicolaides AN, et al. Venous reflux in patients with previous deep venous thrombosis: correlation with ulceration and other symptoms. J Vasc Surg. 1994 Jul;20(1):20–26.
  • Labropoulos N, Gasparis AP, Tassiopoulos AK. Prospective evaluation of the clinical deterioration in post-thrombotic limbs. J Vasc Surg. 2009 Oct;50(4):826–830.
  • Deroo S, Deatrick KB, Henke PK. The vessel wall: a forgotten player in post thrombotic syndrome. Thromb Haemost. 2010 Oct;104(4):681–692.
  • Tian YW, Stacey MC. Cytokines and growth factors in keratinocytes and sweat glands in chronic venous leg ulcers. Immunohistochemical study. Wound Repair Regen. 2003 Sep-Oct;11(5):316–325.
  • Xiao FJ, Zhang D, Wu Y, et al. miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem Biophys Res Commun. 2019;515(3):448–454.
  • Qu Q, Wang L, Bing W, et al. miRNA-126-3p carried by human umbilical cord mesenchymal stem cell enhances endothelial function through exosome-mediated mechanisms in vitro and attenuates vein graft neointimal formation in vivo. Stem Cell Res Ther. 2020;11(1):464.
  • Lu S, Zhu N, Guo W, et al. RNA-seq revealed a circular RNA-microRNA-mRNA regulatory network in hantaan virus infection. Front Cell Infect Microbiol. 2020;10:97. Published 2020 Mar 13.
  • Wang J, Wu M. The up-regulation of miR-21 by gastrodin to promote the angiogenesis ability of human umbilical vein endothelial cells by activating the signaling pathway of PI3K/Akt. Bioengineered. 2021 Dec;12(1):5402–5410. PMID: 34424813.
  • Sheikh MSA, Almaeen A, Alduraywish A, et al. Overexpression of miR-126 protects hypoxic-reoxygenation-exposed HUVEC cellular injury through regulating LRP6 expression. Oxid Med Cell Longev. 2022 Jan 17;2022:3647744. PMID: 35082967.
  • Cui C, Liu G, Huang Y, et al. MicroRNA profiling in great saphenous vein tissues of patients with chronic venous insufficiency. Tohoku J Exp Med. 2012;228(4):341–350.
  • Zhang L, Zhang Y, Zhu H, et al. Overexpression of miR-301a-3p promotes colorectal cancer cell proliferation and metastasis by targeting deleted in liver cancer-1 and runt-related transcription factor 3. J Cell Biochem. 2019;120(4):6078–6089.
  • Xia X, Zhang K, Cen G, et al. MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4. Oncotarget. 2015;6(25):21046–21063.
  • Liu L, Yin H, Hao X, et al. Down-regulation of miR-301a-3p reduces burn-induced vascular endothelial apoptosis by potentiating hMSC-Secreted IGF-1 and PI3K/Akt/FOXO3a pathway. iScience. 2020;23(8):101383.
  • Bach LA. Endothelial cells and the IGF system. J Mol Endocrinol. 2015 Feb;54(1):R1–13.
  • Clemmons DR. Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discov. 2007 Oct;6(10):821–833.
  • Li H, Kong R, Wan B, et al. Initiation of PI3K/AKT pathway by IGF-1 decreases spinal cord injury-induced endothelial apoptosis and microvascular damage. Life Sci. 2020;263:118572.
  • Zhang B, Hao Z, Zhou W, et al. Formononetin protects against ox-LDL-induced endothelial dysfunction by activating PPAR-γ signaling based on network pharmacology and experimental validation. Bioengineered. 2021 Dec;12(1):4887–4898. PMID: 34369277.
  • Linghu KG, Wu GP, Fu LY, et al. 1,8-cineole ameliorates LPS-induced vascular endothelium dysfunction in mice via PPAR-γ dependent regulation of NF-κB. Front Pharmacol. 2019 Mar 7;10:178. PMID: 30930772.
  • Wang R, Bao H, Zhang S, et al. miR-186-5p promotes apoptosis by targeting IGF-1 in SH-SY5Y OGD/R model. Int J Biol Sci. 2018;14(13):1791–1799.
  • Mwaura B, Mahendran B, Hynes N, et al. The impact of differential expression of extracellular matrix metalloproteinase inducer, matrix metalloproteinase-2, tissue inhibitor of matrix metalloproteinase-2 and PDGF-AA on the chronicity of venous leg ulcers. Eur J Vasc Endovasc Surg. 2006 Mar;31(3):306–310.
  • Meyer FJ, Burnand KG, Abisi S, et al. Effect of collagen turnover and matrix metalloproteinase activity on healing of venous leg ulcers. Br J Surg. 2008 Mar;95(3):319–325.
  • Beidler SK, Douillet CD, Berndt DF, et al. Multiplexed analysis of matrix metalloproteinases in leg ulcer tissue of patients with chronic venous insufficiency before and after compression therapy. Wound Repair Regen. 2008 Sep-Oct;16(5):642–648.
  • Lurie F, Passman M, Meisner M, et al. The 2020 update of the CEAP classification system and reporting standards. J Vasc Surg Venous Lymphat Disord. 2020 May;83:342–352. Epub 2020 Feb 27. Erratum in: J Vasc Surg Venous Lymphat Disord. 2021 Jan;9(1):288. PMID: 32113854.
  • Xu L, Xu C, Lin X, et al. Interference with lysophosphatidic acid receptor 5 ameliorates oxidized low-density lipoprotein-induced human umbilical vein endothelial cell injury by inactivating NOD-like receptor family, pyrin domain containing 3 inflammasome signaling. Bioengineered. 2021 Dec;12(1):8089–8099. PMID: 34662522.
  • Yang X, He XQ, Li GD, et al. AntagomiR-451 inhibits oxygen glucose deprivation (OGD)-induced HUVEC necrosis via activating AMPK signaling.PLoS One. 2017;12(4):e0175507.
  • Zhu J, Du S, Zhang J, et al. microRNA-10a-5p from gastric cancer cell-derived exosomes enhances viability and migration of human umbilical vein endothelial cells by targeting zinc finger MYND-type containing 11. Bioengineered. 2022 Jan;13(1):496–507. PMID: 34969361.
  • Liu S, Yan W, Hu Y, et al. Shikonin alleviates endothelial cell injury induced by ox-LDL via AMPK/Nrf2/HO-1 signaling pathway. Evid Based Complement Alternat Med. 2021 Dec 6;2021:5881321. PMID: 34912465.
  • Zhao Z, Wu C, He X, et al. miR-152-3p aggravates vascular endothelial cell dysfunction by targeting DEAD-box helicase 6 (DDX6) under hypoxia. Bioengineered. 2021 Dec;12(1):4899–4910. PMID: 34374627.
  • Meng J, Song X, Yan G, et al. Dendrobine suppresses endoplasmic reticulum stress-induced apoptosis through upregulating microRNA miR-381-3p to decrease caspase-4. Bioengineered. 2021 Dec;12(1):4452–4463. PMID: 34308746.
  • Lin F, Yang Y, Wei S, et al. Hydrogen sulfide protects against high glucose-induced human umbilical vein endothelial cell injury through activating PI3K/Akt/eNOS pathway. Drug Des Devel Ther. 2020 Feb 14;14:621–633. PMID: 32103904.
  • Raffetto JD. Dermal pathology, cellular biology, and inflammation in chronic venous disease. Thromb Res. 2009;123(Suppl 4):S66–71.
  • Santler B, Goerge T. Chronic venous insufficiency - a review of pathophysiology, diagnosis, and treatment. J Dtsch Dermatol Ges. 2017 May;15(5):538–556.
  • Marston W. Evaluation and treatment of leg ulcers associated with chronic venous insufficiency. Clin Plast Surg. 2007 Oct;34(4):717–730.
  • Rosales A, Slagsvold CE, Jørgensen JJ, et al. Kirurgi ved kronisk venøs insuffisiens [Surgical treatment of chronic venous insufficiency]. Tidsskr Nor Laegeforen. 2009 Nov 19;129(22):2378–2380. Norwegian.
  • Chang X, Lochner A, Wang HH, et al. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics. 2021 May 3;11(14):6766–6785.
  • Tan Y, Mui D, Toan S, et al. SERCA overexpression improves mitochondrial quality control and attenuates cardiac microvascular ischemia-reperfusion injury. Mol Ther Nucleic Acids. 2020 Sep 16;22: 696–707.
  • Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis. 2020 Aug;23(3):299–314.
  • Wang J, Toan S, Zhou H, et al. Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: new insights into the mechanisms and therapeutic potentials. Pharmacol Res. 2020;156:104771.
  • Zhou H, Ren J, Toan S, et al. Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside. Ageing Res Rev. 2021 Mar;66:101250.
  • Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury. Acta Pharm Sin B. 2020 Oct;10(10):1866–1879.
  • Khan MI, Batool F, Kalsoom F, et al. New insights on unique therapeutic potentialities of prostacyclin and prostacyclin synthase. Mater Today Chem. 2020;16:100258.
  • Nemecz M, Alexandru N, Tanko G, et al. Role of microRNA in endothelial dysfunction and hypertension. Curr Hypertens Rep. 2016 Dec;18(12):87.
  • Zhang FM, Zheng WH, Wang HJ. MiR-34a-5p inhibition attenuates LPS-induced endothelial cell injury by targeting FOXM1. Eur Rev Med Pharmacol Sci. 2020 Oct;24(20):10829–10838.
  • Chen Q, Li X, Kong L, et al. miR-101-3p induces vascular endothelial cell dysfunction by targeting tet methylcytosine dioxygenase 2. Acta Biochim Biophys Sin (Shanghai). 2020 Feb 3;52(2):180–191.
  • Xia X, Wang S, Ni B, et al. Hypoxic gastric cancer-derived exosomes promote progression and metastasis via miR-301a-3p/PHD3/HIF-1α positive feedback loop. Oncogene. 2020 Sep;39(39):6231–6244.
  • Wang X, Luo G, Zhang K, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 2018 Aug 15;78(16):4586–4598.
  • Dong Y, Wang J, Du K, et al. MiR-301a-3p in the pathogenesis of bacterial meningitis by targeting Cx43. Neuroreport. 2019 Feb 6;30(3):174–181.
  • Jiang H, Lv J. MicroRNA-301a-3p increases oxidative stress, inflammation and apoptosis in ox-LDL-induced HUVECs by targeting KLF7. Exp Ther Med. 2021 Jun;21(6):569.
  • Hu Y, Deng F, Song J, et al. Evaluation of miR-29c inhibits endotheliocyte migration and angiogenesis of human endothelial cells by suppressing the insulin like growth factor 1. Am J Transl Res. 2015 May 15;7(5):866–877.
  • Werner H, Sarfstein R, Bruchim I. Investigational IGF1R inhibitors in early stage clinical trials for cancer therapy. Expert Opin Investig Drugs. 2019 Dec;28(12):1101–1112.
  • Huang XL, Khan MI, Wang J, et al. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis-New insight and futuristic vision. Int J Biol Macromol. 2021 Jun 1;180:739–752. Epub 2021 Mar 15. PMID: 33737188.
  • Zhang J, Liu M, Huang M, et al. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol Res. 2019 Jun;144:292–305.
  • Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. requirement for Flk-1/KDR activation. J Biol Chem. 1998 Nov 13;273(46):30336–30343.
  • Zhao Y, Bilal M, Raza A, et al. Tyrosine kinase inhibitors and their unique therapeutic potentialities to combat cancer. Int J Biol Macromol. 2021 Jan 31;168: 22–37.
  • Lin S, Zhang Q, Shao X, et al. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway. Cell Prolif. 2017 Dec;50(6):e12390.
  • Kvandová M, Majzúnová M, Dovinová I. The role of PPARgamma in cardiovascular diseases. Physiol Res. 2016 Oct 24;65(Suppl 3):S343–S363.
  • Geng J, Fu W, Yu X, et al. Ginsenoside Rg3 alleviates ox-LDL induced endothelial dysfunction and prevents atherosclerosis in ApoE-/- mice by regulating PPARγ/FAK signaling pathway. Front Pharmacol. 2020 Apr 22;11: 500.
  • Wang J, Xu X, Li P, et al. HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis. 2021 Apr;323:1–12.
  • Liu F, Liu Y, Du Y, et al. MiRNA-130a promotes inflammation to accelerate atherosclerosis via the regulation of proliferator-activated receptor γ (PPARγ) expression. Anatol J Cardiol. 2021 Sep;25(9):630–637.
  • Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73.
  • Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol. 2018;81:241–330.
  • Lv Y, Zhao X, Zhu L, et al. Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis. Theranostics. 2018 Apr 15;8(10):2830–2845.
  • Serra R, Buffone G, Falcone D, et al. Chronic venous leg ulcers are associated with high levels of metalloproteinases-9 and neutrophil gelatinase-associated lipocalin. Wound Repair Regen. 2013 May-Jun;21(3):395–401.
  • Caimi G, Ferrara F, Montana M, et al. Behaviour of the plasma concentration of gelatinases and their tissue inhibitors in subjects with venous leg ulcers. Clin Hemorheol Microcirc. 2015;60(3):309–316.
  • Raffetto JD, Khalil RA. Matrix metalloproteinases in venous tissue remodeling and varicose vein formation. Curr Vasc Pharmacol. 2008 Jul;6(3):158–172.