4,993
Views
6
CrossRef citations to date
0
Altmetric
Review

Prodigiosin: a promising biomolecule with many potential biomedical applications

, , , & ORCID Icon
Pages 14227-14258 | Received 01 Mar 2022, Accepted 26 May 2022, Published online: 22 Jun 2022

References

  • Koyande AK, Show PL, Guo R, et al. Bio-processing of algal bio-refinery: a review on current advances and future perspectives. Bioengineered. 2019;10(1):574–592.
  • Numan M, Bashir S, Mumtaz R, et al. Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech. 2018;8(4).
  • Venil C. An insightful overview on microbial pigment, prodigiosin. Electron J. 2009;5:49–61.
  • Williamson NR, Fineran PC, Leeper FJ, et al. The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol. 2006;4(12):887–899.
  • Venil CK, Dufossé L, Renuka Devi P. Bacterial pigments: sustainable compounds with market potential for pharma and food industry, Front Sustain Food Syst. 2020;4(1):49–61
  • Bernardes N, Seruca R, Chakrabarty AM, et al. Microbial-based therapy of cancer current progress and future prospects. Bioeng Bugs. 2010;1(3):178–190
  • Durán N, Nakazato G, Durán M, et al. Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol. 2021;37(9):1–20.
  • Han R, Xiang R, Li J, et al. High-level production of microbial prodigiosin: a review. J Bas Microbiol. 2021;61(6):506–523.
  • Darshan N, Manonmani HK. Prodigiosin and its potential applications. J Food Sci Technol. 2015;52(9):5393–5407.
  • Sudhakar C, Shobana C, Selvankumar T, et al. Prodigiosin production from Serratia marcescens strain CSK and their antioxidant, antibacterial, cytotoxic effect and in silico study of caspase-3 apoptotic protein. Biotechnol Appl Biochem. 2021. 10.1002/bab.2261
  • Suryawanshi RK, Patil CD, Koli SH, et al. Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Nat Prod Res. 2017;31(5):572–577.
  • Yip CH, Mahalingam S, Wan KL, et al. Prodigiosin inhibits bacterial growth and virulence factors as a potential physiological response to interspecies competition. PLoS One. 2021;16(6):e0253445.
  • Kurz CL, Chauvet S, Andrès E, et al. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J. 2003;22(7):1451–1460.
  • Wang SL, Wang SL, Nguyen VB, et al. Production and potential applications of bioconversion of chitin and protein-containing fishery byproducts into prodigiosin. Rev Mol. 2020;25.
  • Paul T, Bandyopadhyay TK, Mondal A, et al. A comprehensive review on recent trends in production, purification, and applications of prodigiosin. Biomass Convers Bioref. 2022;12:1409–1431.
  • Jeong YJ, Kim HJ, Kim S, et al. Enhanced large-scale production of Hahella chejuensis -derived prodigiosin and evaluation of its bioactivity. J Microbiol Biotechnol. 2021;31(12):1624–1631.
  • Bennett JW, Bentley R. Seeing red: the story of prodigiosin. Adv Appl Microbiol. 2000;47:1–32.
  • Zang CZ, Yeh CW, Chang WF, et al. Identification and enhanced production of prodigiosin isoform pigment from Serratia marcescens N10612. J Taiwan Inst Chem Eng. 2014;45(4):1133–1139.
  • Gong J, Ren Y, Fu R, et al. pH-mediated antibacterial dyeing of cotton with prodigiosins nanomicelles produced by microbial fermentation. Polymers (Basel). 2017;9(12):468.
  • Kulandaisamy Venil C, Lakshmanaperumalsamy P. An insightful overview on microbial pigment, prodigiosin. Electron J Biol. 2009;5:49–61.
  • Brands S, Brass HUC, Klein AS, et al. KnowVolution of prodigiosin ligase pigc towards condensation of short-chain prodiginines. Catal Sci Technol. 2021;11(8):2805–2815.
  • Jia X, Liu F, Zhao K, et al. Identification of essential genes associated with prodigiosin production in Serratia marcescens FZSF02. Front Microbiol. 2021;12. 10.3389/fmicb.2021.705853
  • Yip CH, Yarkoni O, Ajioka J, et al. Recent advancements in high-level synthesis of the promising clinical drug, prodigiosin. Appl Microbiol Biotechnol. 2019;103(4):1667–1680.
  • Jehlička J, Edwards HGM, Oren A. Analysis of brown, violet and blue pigments of microorganisms by Raman spectroscopy. TrAC - Trends Anal Chem. 2022;146:116501.
  • Carbonell GV, Della Colleta HHM, Yano T, et al. Clinical relevance and virulence factors of pigmented Ssrratia marcescens. FEMS Immunol Med Microbiol. 2000;28:143–149.
  • Jissa G, Soorej M. Prodigiosin from marine bacterium production, characterization and application as dye in textile. Int J Biotechnol Biochem. 2011;7:155–191.
  • Choi SY, Lim S, Hye YK, et al. Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J Biol Eng. 2021;15(1):1–16.
  • Gerber NN, Lechevalier MP. Prodiginine (prodigiosin like) pigments from streptomyces and other aerobic actinomycetes. Can J Microbiol. 1976;22:658–667.
  • Elahian F, Moghimi B, Dinmohammadi F, et al. The anticancer agent prodigiosin is not a multidrug resistance protein substrate. DNA Cell Biol. 2013;32(3):90–97.
  • Rastegari B, Karbalaei-Heidari HR. Sulfate as a pivotal factor in regulation of Serratia sp. strain S2B pigment biosynthesis. Res Microbiol. 2016;167(8):638–646.
  • Song MJ, Bae J, Lee DS, et al. Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia sp KH-95. J Biosci Bioeng. 2006;101(2):157–161.
  • Elmenshawey A, Abdelrazak A, Mowafy AM, et al. Optimization of bioreactor cultivation parameters by taguchi orthogonal array design for enhanced prodigiosin production. Iran J Chem Chem Eng.2022 May 5; 39:319–330.
  • Gondil VS, Asif M, Bhalla TC. Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity. 3 Biotech. 2022 May 5; 7(5). 10.1007/s13205-017-0979-z
  • Abdul Manas NH, Chong LY, Tesfamariam YM, et al. Effects of oil substrate supplementation on production of prodigiosin by Serratia nematodiphila for dye-sensitized solar cell. J Biotechnol. 2022 May 5; 317:16–26.
  • Metwally RA, El-Sersy NA, El Sikaily A, et al. Statistical optimization and characterization of prodigiosin from a marine Serratia rubidaea RAM-Alex. J Pure Appl Microbiol. 2017;11(3):1259–1266.
  • El-Bondkly AMA, Mervat MMM, Bassyouni RH. Overproduction and biological activity of prodigiosin-like pigments from recombinant fusant of endophytic marine Streptomyces species. Antonie van leeuwenhoek. Int J Gen Mol Microbiol. 2022 May 5; 102:719–734.
  • Stankovic N, Radulovic V, Petkovic M, et al. Nikodinovic-Runic J. Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl Microbiol Biotechnol. 2022 May 5; 96:1217–1231.
  • Liu P, Zhu H, Zheng G, et al. Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production. Sci China Life Sci. 2022 May 5; 60(9):948–957.
  • Erandapurathukadumana Sreedharan H, Harilal CC, Pradeep S. Response surface optimization of prodigiosin production by phthalate degrading Achromobacter denitrificans SP1 and exploring its antibacterial activity. Prep Biochem Biotechnol. 2022 May 5; 50(6):564–571.
  • Lee JS, Kim YS, Park S, et al. Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Appl Environ Microbiol. 2022 May 5; 77:4967–4973.
  • Haddix PL, Shanks RMQ. Prodigiosin pigment of Serratia marcescens is associated with increased biomass production. Arch Microbiol. 2018;200(7):989–999.
  • Wang F, Luo H, Song G, et al. Prodigiosin found in Serratia marcescens y2 initiates phototoxicity in the cytomembrane. Electron J Biotechnol. 2013;16(4
  • Andreeva IN, Ogorodnikova TI. Pigmentation of Serratia marcescens and spectral properties of prodigiosin. Mikrobiologiia. 2015;84(1):43–49.
  • Kurbanoglu EB, Ozdal M, Ozdal OG, et al. Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone. Brazilian J Microbiol. 2015;46(2):631–637.
  • Wei YH, Chen WC. Enhanced production of prodigiosin-like pigment from Serratia marcescens by medium improvement and oil-supplementation strategies. J Biosci Bioeng. 2005;99(6):616–622.
  • Sezonov G, Joseleau-Petit D, D’Ari R. Escherichia coli physiology in Luria-bertani broth. J Bacteriol. 2022 May 5; 189(23):8746–8749.
  • Williams RP. Biosynthesis of prodigiosin, a secondary metabolite of Serratia marcescens. Appl Microbiol. 1973;25(3):396–402.
  • Faraag AH A, El-Batal I, El-Hendawy HH. Characterization of prodigiosin produced by Serratia marcescens strain isolated from irrigation water in Egypt. Nat Sci. 2017;15(5). Available from. http://www.sciencepub.net/naturehttp://www.sciencepub.net/nature.8.doi:10.7537/marsnsj150517.08
  • Tarafdar A, Gaur VK, Rawat N, et al. Advances in biomaterial production from animal derived waste. Bioengineered. 2021;12(1):8247–8258.
  • Aruldass CA, Venil CK, Zakaria ZA, et al. Brown sugar as a low-cost medium for the production of prodigiosin by locally isolated Serratia marcescens UTM1. Int Biodeterior Biodegrad. 2014;95:19–24.
  • Elkenawy NM, Yassin AS, Elhifnawy HN, et al. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnol Reports. 2022 May 5; 14:47–53.
  • Arslan NP. Use of wool protein hydrolysate as nitrogen source in production of microbial pigments. J Food Process Preserv. 2021;45(7):e15660.
  • Wang SL, Wang CY, Yen YH, et al. Enhanced production of insecticidal prodigiosin from Serratia marcescens TKU011 in media containing squid pen. Process Biochem. 2012;47(11):1684–1690.
  • Giri AV, Anandkumar N, Muthukumaran G, et al. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol. 2004;4(1):1–10.
  • Nguyen TH, Wang SL, Doan MD, et al. Utilization of by-product of groundnut oil processing for production of prodigiosin by microbial fermentation and its novel potent anti-nematodes effect. Agronomy. 2022;12(1):41.
  • De Araújo HWC, Fukushima K, Takaki GMC. Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules. 2010;15(10):6931–6940.
  • Tran LT, Techato K, Nguyen VB, et al. Utilization of cassava wastewater for low-cost production of prodigiosin via Serratia marcescens tnu01 fermentation and its novel potent α-glucosidase inhibitory effect. Molecules. 2021;26(20):6270.
  • Dos Santos RA, Rodríguez DM, da Silva LAR, et al. Enhanced production of prodigiosin by Serratia marcescens UCP 1549 using agrosubstrates in solid-state fermentation. Arch Microbiol. 2021;203(7):4091–4100.
  • Chen WC, Yu WJ, Chang CC, et al. Enhancing production of prodigiosin from Serratia marcescens C3 by statistical experimental design and porous carrier addition strategy. Biochem Eng J. 2013;78:93–100.
  • Panesar R, Kaur S, Panesar PS. Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci. 2022 May 5; 1:70–76.
  • Lopes FC, Ligabue-Braun R. Agro-industrial residues: eco-friendly and inexpensive substrates for microbial pigments production. Front Sustain Food Syst. 2021;5:65.
  • Williams RP, Gott CL, Qadri SM, et al. Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens. J Bacteriol. 1971;106(2):438–443.
  • Khanam B, Chandra R. Comparative analysis of prodigiosin isolated from endophyte Serratia marcescens. Lett Appl Microbiol. 2018;66(3):194–201.
  • Lin C, Jia X, Fang Y, et al. Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets. Electron J Biotechnol. 2019;40:58–64.
  • Ren Y, Gong J, Fu R, et al. Dyeing and functional properties of polyester fabric dyed with prodigiosins nanomicelles produced by microbial fermentation. J Clean Prod. 2017;148:375–385.
  • Chávez-Castilla LR, Aguilar O. An integrated process for the in situ recovery of prodigiosin using micellar ATPS from a culture of Serratia marcescens. J Chem Technol Biotechnol. 2016;91(11):2896–2903.
  • Luong VT, Thanh NS L, Tuyen DT, et al. Prodigiosin purification from Serratia marcescens M10 and its antitumor activities. Vietnam J Biotechnol. 2021;19(2):289–299
  • Hu W, Zheng R, Liao Y, et al. Evaluating the biological potential of prodigiosin from Serratia marcescens kh-001 against asian citrus psyllid. J Econ Entomol. 2021;114(3):1219–1225.
  • Yang Q, Gao Y, Ke J, et al. Antibiotics: an overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered. 2021;12(1):7376–7416.
  • Lapenda JC, Silva PA, Vicalvi MC, et al. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World J Microbiol Biotechnol. 2015;31(2):399–406.
  • Arivizhivendhan KV, Mahesh M, Boopathy R, et al. Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. J Food Sci Technol. 2018;55(7):2661–2670.
  • Lin SR, Chen YH, Tseng FJ, et al. The production and bioactivity of prodigiosin: quo vadis? Drug Discov Today. 2020;25(5):828–836.
  • Darshan N, Manonmani HK. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death. AMB Express. 2016;6(1). DOI:10.1186/s13568-016-0222-z
  • Ravindran A, Anishetty S, Pennathur G. Molecular dynamics of the membrane interaction and localisation of prodigiosin. J Mol Graph Model. 2020;98:107614.
  • Danevčič T, Vezjak MB, Zorec M, et al. Prodigiosin - A multifaceted Escherichia coli antimicrobial agent. PLoS One. 2016;11(9):e0162412.
  • Montaner B, Castillo-Ávila W, Martinell M, et al. DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicol Sci. 2005;85(2):870–879.
  • Berlanga M, Ruiz N, Hernandez-Borrell J, et al. Role of the outer membrane in the accumulation of quinolones by Serratia marcescens. Can J Microbiol. 2000;46(8):716–722.
  • Suryavanshi MV, Waghmode SR, Bharti N, et al. Isolation and virtual screening of antimicrobial prodigiosin pigment from oxalotrophic Serratia marcescens OX_R strain. J Appl Pharm Sci. 2016;6:52–58.
  • Suryawanshi RK, Patil CD, Borase HP, et al. Studies on production and biological potential of prodigiosin by Serratia marcescens. Appl Biochem Biotechnol. 2014;173(5):1209–1221.
  • John Jimtha C, Jishma P, Sreelekha S, et al. Antifungal properties of prodigiosin producing rhizospheric Serratia sp. Rhizosphere. 2017;3:105–108.
  • Gutiérrez-Román MI, Holguín-Meléndez F, Dunn MF, et al. Antifungal activity of Serratia marcescens CFFSUR-B2 purified chitinolytic enzymes and prodigiosin against Mycosphaerella fijiensis, causal agent of black Sigatoka in banana (Musa spp.). BioControl. 2015;60(4):565–572.
  • Someya N, Nakajima M, Hirayae K, et al. Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium, Serratia marcescens strain b2 against gray mold pathogen, botrytis cinerea. J Gen Plant Pathol. 2001;67(4):312–317.
  • Zhang H, Peng Y, Zhang S, et al. Algicidal effects of prodigiosin on the harmful algae Phaeocystis globosa. Front Microbiol. 2016;7:602.
  • Herráez R, Quesada R, Dahdah N, et al. Tambjamines and prodiginines: biocidal activity against Trypanosoma cruzi. Pharmaceutics. 2021;13(5):705 .
  • Da Silva Melo P, Durán N, Haun M. Cytotoxicity of prodigiosin and benznidazole on V79 cells. Toxicol Lett. 2000;116(3):237–242.
  • Ehrenkaufer G, Li P, Stebbins EE, et al. Identification of anisomycin, prodigiosin and obatoclax as compounds with broad-spectrum anti-parasitic activity. PLoS Negl Trop Dis. 2020;14(3):e0008150.
  • Genes C, Baquero E, Echeverri F, et al. Mitochondrial dysfunction in Trypanosoma cruzi: the role of serratia marcescens prodigiosin in the alternative treatment of Chagas disease. Parasites Vectors. 2011;4(1):66.
  • Rahul S, Chandrashekhar P, Hemant B, et al. In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol Int. 2015;64(5):353–356.
  • Balamuth W, Brent MM. Biological studies on Entamoeba histolytica. IV. direct action of the antibiotic, prodigiosin. Proc Soc Exp Biol Med. 1950;75:374–378.
  • Ehrenkaufer GM, Suresh S, Solow-Cordero D, et al. High-throughput screening of Entamoeba identifies compounds which target both life cycle stages and which are effective against metronidazole resistant parasites. Front Cell Infect Microbiol. 2018;8. 10.3389/fcimb.2018.00276
  • Davidson DE, Johnsen DO, Tanticharoenyos P, et al. Evaluating new antimalarial drugs against trophozoite induced Plasmodium cynomolgi malaria in rhesus monkeys. Am J Trop Med Hyg. 1976;25(1):26–33.
  • Isaka M, Jaturapat A, Kramyu J, et al. potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC 4785. Antimicrob Agents Chemother. 2002;46(4):1112–1113.
  • Lazaro JEH, Nitcheu J, Predicala RZ, et al. Heptyl prodigiosin, a bacterial, metabolite, is antimalarial in vivo and non-mutagenic in vitro. J Nat Toxins. 2002;11(4):367–377.
  • Papireddy K, Smilkstein M, Kelly JX, et al. Antimalarial activity of natural and synthetic prodiginines. J Med Chem. 2011;54(15):5296–5306.
  • Patil CD, Patil SV, Salunke BK, et al. Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and anopheles stephensi. Parasitol Res. 2011;109(4):1179–1187.
  • Suryawanshi RK, Patil CD, Borase HP, et al. Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pestic Biochem Physiol. 2015;123:49–55.
  • Pérez-Tomás R, Montaner B, Llagostera E, et al. The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol. 2003;66(8):1447–1452.
  • Soto-Cerrato V, Llagostera E, Montaner B, et al. Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin. Biochem Pharmacol. 2004;68(7):1345–1352.
  • Llagostera E, Soto-Cerrato V, Montaner B, et al. Prodigiosin induces apoptosis by acting on mitochondria in human lung cancer cells. Ann N Y Acad Sci. 2003;1010(1):178–181.
  • Francisco R, Pérez-Tomás R, Gimènez-Bonafé P, et al. Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur J Pharmacol. 2007;572(2–3):111–119.
  • Park G, Tomlinson JT, Melvin MS, et al. Zinc and copper complexes of prodigiosin: implications for copper-mediated double-strand DNA cleavage. Org Lett. 2003;5(2):113–116.
  • Díaz-Ruiz C, Montaner B, Pérez-Tomás R. Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1. Histol Histopathol. 2001;16(2):415–421.
  • Chiu W-J, Lin S-R, Chen Y-H, et al. Prodigiosin-emerged PI3K/Beclin-1-independent pathway elicits autophagic cell death in doxorubicin-sensitive and -resistant lung cancer. J Clin Med. 2018;7(10):321.
  • Wang Z, Li B, Zhou L, et al. Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci U S A. 2016;113(46):13150–13155.
  • Nguyen VB, Chen SP, Nguyen TH, et al. Novel efficient bioprocessing of marine chitins into active anticancer prodigiosin. Mar Drugs. 2020;18(1):15.
  • Li D, Liu J, Wang X, et al. Biological potential and mechanism of prodigiosin from Serratia marcescens subsp. lawsoniana in human choriocarcinoma and prostate cancer cell lines. Int J Mol Sci. 2018;19(11):3465.
  • Llagostera E, Soto-Cerrato V, Joshi R, et al. High cytotoxic sensitivity of the human small cell lung doxorubicin-resistant carcinoma (GLC4/ADR) cell line to prodigiosin through apoptosis activation. Anticancer Drugs. 2005;16(4):393–399.
  • Anwar MM, Shalaby M, Embaby AM, et al. Prodigiosin/PU-H71 as a novel potential combined therapy for triple negative breast cancer (TNBC): preclinical insights. Sci Rep. 2020;10(1):14706.
  • Goard CA, Schimmer AD. An evidence-based review of obatoclax mesylate in the treatment of hematological malignancies. Core Evid. 2013;8:15–26.
  • Lim B, Greer Y, Lipkowitz S, et al. Novel apoptosis-inducing agents for the treatment of cancer, a new arsenal in the toolbox. Cancers (Basel). 2019;11(8):1087.
  • Schimmer AD, Raza A, Carter TH, et al. A multicenter phase l/ll study of obatoclax mesylate administered as a 3- Or 24-hour infusion in older patients with previously untreated acute myeloid leukemia. PLoS One. 2014;9(10):e108694.
  • Goy A, Hernandez-Ilzaliturri FJ, Kahl B, et al. A phase I/II study of the pan Bcl-2 inhibitor obatoclax mesylate plus bortezomib for relapsed or refractory mantle cell lymphoma. Leuk Lymphoma. 2014;55(12):2761–2768.
  • Chen S, Ren Y, Duan P. Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling. Biomed Pharmacother. 2020;129:110371.
  • Islan GA, Cacicedo ML, Bosio VE, et al. Advances in smart nanopreparations for oral drug delivery. Sma Pharm Nano. 2016: 479–521
  • Su JC, Chen KF, Chen WL, et al. Synthesis and biological activity of obatoclax derivatives as novel and potent SHP-1 agonists. Eur J Med Chem. 2012;56:127–133.
  • Zheng D, Chen S, Cai K, et al.Prodigiosin inhibits cholangiocarcinoma cell proliferation and induces apoptosis via suppressing SNAREs-dependent autophagy.Cancer Cell Int.2021;21(1):1–12.
  • Williamson NR, Fineran PC, Gristwood T, et al. Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol. 2007;2(6):605–618.
  • Davey NE, Travé G, Gibson TJ. How viruses hijack cell regulation. Trends Biochem Sci. 2011;36(3):159–169.
  • Suba K, Stalin A, Girija A, et al. Homology modeling and docking analysis of prodigiosin from Serratia marcescens. Biotechnology. 2013;55:12897–12902.
  • Zhou W, Zeng C, Liu RH, et al. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro. Appl Microbiol Biotechnol. 2016;100(9):3979–3988.
  • Suryawanshi RK, Koujah L, Patil CD, et al. Bacterial pigment prodigiosin demonstrates a unique antiherpesvirus activity that is mediated through inhibition of prosurvival signal transducers. J Virol. 2020;94(13). DOI:10.1128/JVI.00251-20
  • Varghese FS, Rausalu K, Hakanen M, et al. Obatoclax inhibits alphavirus membrane fusion by neutralizing the acidic environment of endocytic compartments. Antimicrob Agents Chemother. 2017;61(3). DOI:10.1128/AAC.02227-16
  • Varghese FS, van Woudenbergh E, Overheul GJ, et al. Berberine and obatoclax inhibit sars-cov-2 replication in primary human nasal epithelial cells in vitro. Viruses. 2021;13(2):282.
  • Mao B, Le-Trilling VTK, Wang K, et al. Obatoclax inhibits SARS-CoV-2 entry by altered endosomal acidification and impaired cathepsin and furin activity in vitro. Emerg Microbes Infect. 2022;11(1):483–497.
  • Patil CD, Suryawanshi RK, Koujah L, et al. Antiviral efficacy of prodigiosin against corneal herpes simplex virus infection. Invest Ophthalmol Vis Sci. 2020;61:2982.
  • Guryanov ID, Karamova NS, Yusupova DV, et al. Bacterial pigment prodigiosin and its genotoxic effect. Russ J Bioorganic Chem. 2013;39(1):106–111.
  • Han SB, Kim HM, Kim YH, et al. T-cell specific immunosuppression by prodigiosin isolated from Serratia marcescens. Int J Immunopharmacol. 1998;20(1–3):1–13.
  • Li X, Tan X, Chen Q, et al. Prodigiosin of Serratia marcescens zpg19 alters the gut microbiota composition of Kunming mice. Molecules. 2021;26(8):2156.
  • Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2022 Apr 19;14(2):282–295.
  • Dozie-Nwachukwu SO, Danyuo Y, Obayemi JD, et al. Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery. Mater Sci Eng C. 2017;71:268–278.
  • Obayemi JD, Danyuo Y, Dozie-Nwachukwu S, et al. PLGA-based microparticles loaded with bacterial- synthesized prodigiosin for anticancer drug release: effects of particle size on drug release kinetics and cell viability. Mater Sci Eng C. 2016;66:51–65.
  • El-Batal AI, El-Hendawy HH, Faraag AHI. In silicoandIn vitrocytotoxic effect of prodigiosin-conjugated silver nanoparticles on liver cancer cells (HepG2). Biotechnologia. 2017;98(3):225–243.
  • Dozie-Nwachukwu SO, Obayemi JD, Danyuo Y, et al. A comparative study of the adhesion of biosynthesized gold and conjugated gold/prodigiosin nanoparticles to triple negative breast cancer cells. J Mater Sci Mater Med. 2017;28(9). DOI:10.1007/s10856-017-5943-2
  • Zhao K, Li D, Cheng G, et al. Targeted delivery prodigiosin to choriocarcinoma by peptide-guided dendrigraft poly-l-lysines nanoparticles. Int J Mol Sci. 2019;20(21):5458.
  • Arivizhivendhan KV, Mahesh M, Murali R, et al. Prodigiosin-iron-oxide-carbon matrix for efficient antibiotic-resistant bacterial disinfection of contaminated water. ACS Sustain Chem Eng. 2019;7(3):3164–3175.
  • Rastegari B, Karbalaei-Heidari HR, Zeinali S, et al. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: synthesis, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces. 2017;158:589–601.
  • Ren Y, Gong J, Fu R, et al. Antibacterial dyeing of silk with prodigiosins suspension produced by liquid fermentation. J Clean Prod. 2018;201:648–656.
  • Namazkar S, Ahmad WA. Spray-dried prodigiosin from Serratia marcescens as a colorant. Biosci Biotechnol Res Asia. 2013;10(1):69–76.
  • Guryanov I, Naumenko E, Akhatova F, et al. Selective cytotoxic activity of prodigiosin@halloysite nanoformulation. Front Bioeng Biotechnol. 2020;8. DOI:10.3389/fbioe.2020.00424
  • Mokhtarian F, Rastegari B, Zeinali S, et al. Theranostic effect of folic acid functionalized MIL-100(Fe) for delivery of prodigiosin and simultaneous tracking-combating breast cancer. J Nanomater. 2022;2022:1–16.
  • Danyuo Y, Dozie-Nwachukwu S, Obayemi JD, et al. Swelling of poly(N-isopropylacrylamide) P(NIPA)-based hydrogels with bacterial-synthesized prodigiosin for localized cancer drug delivery. Mater Sci Eng C. 2016;59:19–29.
  • Danyuo Y, Ani CJ, Salifu AA, et al. anomalous release kinetics of prodigiosin from poly-N-Isopropyl-acrylamide based hydrogels for the treatment of triple negative breast cancer. Sci Rep. 2019;9(1): DOI:10.1038/s41598-019-39578-4.
  • Arivizhivendhan KV, Boopathy R, Maharaja P, et al. Bioactive prodigiosin-impregnated cellulose matrix for the removal of pathogenic bacteria from aqueous solution. RSC Adv. 2015;5(84):68621–68631.
  • Amorim LFA, Mouro C, Riool M, et al. Antimicrobial food packaging based on prodigiosin-Incorporated double-layered bacterial cellulose and chitosan composites. Polymers (Basel). 2022;14(2):315.
  • Akpan UM, Pellegrini M, Obayemi JD, et al. Prodigiosin-loaded electrospun nanofibers scaffold for localized treatment of triple negative breast cancer. Mater Sci Eng C. 2020;114:110976.
  • Danyuo Y, Obayemi JD, Dozie-Nwachukwu S, et al. Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release. Mater Sci Eng C. 2014;42:734–745.
  • Danyuo Y, Ani CJ, Obayemi JD, et al. Prodigiosin release from an implantable biomedical device: effect on cell viability. Adv Mater Res. 2015;1132:3–18.
  • Qian Z, Wang K, Liu S, et al. Quantitative prediction of paravalvular leak in transcatheter aortic valve replacement based on tissue-mimicking 3D printing. JACC Cardiovasc Imaging. 2017;10(7):719–731.
  • Wang K, Ho CC, Zhang C, et al. A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering. 2017;3(5):653–662.
  • Mathew E, Pitzanti G, Larrañeta E, et al. Three-dimensional printing of pharmaceuticals and drug delivery devices. Pharmaceutics. 2020;12(3):266.
  • Vithani K, Goyanes A, Jannin V, et al. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res. 2019;36(1). 10.1007/s11095-018-2531-1
  • Kobayashi N, Ichikawa Y. A protein associated with prodigiosin formation in Serratia marcescens. Microbiol Immunol. 1989;33(4):257–263.
  • Rastegari B, Karbalaei-Heidari HR, Yousefi R, et al. Interaction of prodigiosin with HSA and β-Lg: spectroscopic and molecular docking studies. Bioorg Med Chem. 2016;24(7):1504–1512.
  • Krishna PS, Vani K, Prasad MR, et al. In -silico molecular docking analysis of prodigiosin and cycloprodigiosin as COX-2 inhibitors. Springerplus. 2013;2(1). 10.1186/2193-1801-2-172
  • Chang TM, Sinharay S, Astashkin AV, et al. Prodigiosin analogue designed for metal coordination: stable zinc and copper pyrrolyldipyrrins. Inorg Chem. 2014;53(14):7518–7526.
  • Mohammed SJ, Luti KJK. A kinetic model for prodigiosin production by Serratia marcescens as a bio-colorant in bioreactor. AIP Conf Proc. 2022 May 5; 2213:020027.
  • Sumathi C, Mohanapriya D, Swarnalatha S, et al. Production of prodigiosin using tannery fleshing and evaluating its pharmacological effects. Sci World J. 2014;2014:1–8.
  • Naik C, Srisevita JM, Shushma KN, et al. Peanut oil cake: a novel substrate for enhanced cell growth and prodigiosin production from Serratia marcescens CF-53. J Res Biol [Internet] 2012 cited 2022 May 5; 2:549–557. [Internet]. http://jresearchbiology.com/
  • Song MJ, Bae J, Lee DS, et al. Purification and characterization of prodigiosin produced by integrated bioreactor from serratia sp. KH-95. J Biosci Bioeng [Internet] 2006 cited 2022 May 5; 101:157–161. Available from.;(2):. https://pubmed.ncbi.nlm.nih.gov/16569612/
  • Liu X, Wang Y, Sun S, et al. Mutant breeding of Serratia marcescens strain for enhancing prodigiosin production and application to textiles. Prep Biochem Biotechnol. May 5; 43(3):271–284.
  • A KV, Mahesh M, Boopathy R, et al. A novel method for the extraction of prodigiosin from bacterial fermenter integrated with sequential batch extraction reactor using magnetic iron oxide. Process Biochem. 2016;51(10):1731–1737.
  • Mahesh MAK, Sekaran GRMR. Bioactive prodigiosin isolated from Serratia marcescens using solid state fermenter and its bactericidal activity compared with conventional antibiotics. J Microb Biochem Technol. 2015;07(5):5.
  • Dos Santos RA, Rodríguez DM, da Silva LAR, et al. Enhanced production of prodigiosin by Serratia marcescens UCP 1549 using agrosubstrates in solid-state fer-mentation. Arch Microbiol. 2022 May 5; 203:4091–4100.
  • Li D, Liu J, Wang X, et al. Biological potential and mechanism of prodigiosin from Serratia marcescens subsp. lawsoniana in human choriocarcinoma and prostate cancer cell lines. Int J Mol Sci. 2022 May 5;19(11):3465.
  • Dasgupta Mandal D, Majumdar S, Dey S, et al., Utilization of low-cost fatty acid sources by bacterial isolate for improved production of valuable prodigiosin. Lect Notes Bioeng. 2021;5(1):21–27.
  • Parani K, Saha BK. Optimization of prodigiosin production from a strain of Serratia marcescens SR 1 and screening for antifungal activity. J Biol Control 2022 May 5; 22:73–79.
  • Arslan NP. Use of wool protein hydrolysate as nitrogen source in production of microbial pigments. J Food Process Preserv. [Internet] 2021 cited 2022 May 5; 45:e15660. Available from.;(7):. https://onlinelibrary.wiley.com/doi/full/10.1111/jfpp.15660
  • Giri AV, Anandkumar N, Muthukumaran G, et al. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol. 2022 May 5; 4(1):1–10.
  • Shahitha S, Poornima K. Enhanced production of prodigiosin production in Serratia marcescens. J Appl Pharm Sci. 2012;2:138–140.
  • Lin C, Jia X, Fang Y, et al. Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets. Electron J Biotechnol. 2019;40:58–64.
  • Nguyen VB, Chen SP, Nguyen TH, et al. Novel efficient bioprocessing of marine chitins into active anticancer prodigiosin. Mar Drugs. 2022 May 5; 18.
  • Wang SL, Wang CY, Yen YH, et al. Enhanced production of insecticidal prodigiosin from Serratia marcescens TKU011 in media containing squid pen. Process Biochem. 2012;47(11):1684–1690.
  • Wei YH, Chen WC. Enhanced production of prodigiosin-like pigment from Serratia marcescens SMΔR by medium improvement and oil-supplementation strategies. J Biosci Bioeng. 2022 May 5; 99(6):616–622.
  • Kurbanoglu EB, Ozdal M, Ozdal OG, et al. Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone. Brazilian J Microbiol. 2022 May 5; 46(2):631–637.
  • Liu W, Yang J, Tian Y, et al. An in situ extractive fermentation strategy for enhancing prodigiosin production from Serratia marcescens bwl1001 and its application to inhibiting the growth of Microcystis aeruginosa. Biochem Eng J. 2021;166:107836.
  • Cang S, Sanada M, Johdo O, et al. High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnol Lett. 2022 May 5; 22(22):1761–1765.
  • Xia S, Veony E, Yang Q. Kitchen waste as a novel available substrate for prodigiosin production by Serratia marcescens. IOP Conf Ser Earth Environ Sci. 2022 May 5; 171:012037.
  • Picha P, Kale D, Dave I, et al. Comparative studies on prodigiosin production by Serratia marcescens using various crude fatty acid sources-its characterization and applications. IntJCurrMicrobiolAppSci. 2022 May 5; 2:254–267.
  • Pan X, Sun C, Tang M, et al. Loss of serine-type D-Ala-D-Ala carboxypeptidase daca enhances prodigiosin production in Serratia marcescens. Front Bioeng Biotechnol. 2022 May 5;7.
  • Suryawanshi RK, Patil CD, Borase HP, et al. Studies on production and biological potential of prodigiosin by Serratia marcescens. Appl Biochem Biotechnol. [Internet] 2014 cited 2022 May 5; 173:1209–1221. [Internet].;(5):. https://pubmed.ncbi.nlm.nih.gov/24781979/
  • Sun Y, Wang L, Pan X, et al. Improved Prodigiosin production by relieving CpxR temperature-sensitive inhibition. Front Bioeng Biotechnol [Internet] 2020 cited 2022 May 5; 8:344. Available from.
  • Chen WC, Tsai MJ, Soo PC, et al. Construction and co-cultivation of two mutant strains harboring key precursor genes to produce prodigiosin. J Biosci Bioeng. 2018;126(6):783–789.
  • De Araújo HWC, Fukushima K, Takaki GMC. Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules. 2022 May 5; 15:6931–6940.
  • Bhagwat A, Padalia U. Optimization of prodigiosin biosynthesis by Serratia marcescens using unconventional bioresources. J Genet Eng Biotechnol. 2022 May 5; 18(1).
  • Danevčič T, Borić Vezjak M, Zorec M, et al. Prodigiosin-A multifaceted Escherichia coli antimicrobial agent. PLoS One. 2016;11(9):e0162412.
  • Tomás RP, Ruir CD, Montaner B. Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1. Histol Histopathol. 2001;16(2):415–421.
  • Yamamoto D, Kiyozuka Y, Uemura Y, et al. Cycloprodigiosin hydrochloride, a H+/Cl− symporter, induces apoptosis in human breast cancer cell lines. J Cancer Res Clin Oncol. 2000;126(4):191–197.
  • Montaner B, Pérez-Tomás R. Prodigiosin-induced apoptosis in human colon cancer cells. Life Sci. 2001;68(17):2025–2036.
  • Montaner B, Navarro S, Piqué M, et al. Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br J Pharmacol. 2000;131(3):585–593.
  • Campas C, Dalmau M, Montaner B, et al. Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia. Leukemia. 2003;17(4):746–750.