1,410
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Exosomes derived from fibrinogen-like protein 1-overexpressing bone marrow-derived mesenchymal stem cells ameliorates rheumatoid arthritis

, , , , , & ORCID Icon show all
Pages 14545-14561 | Published online: 24 Jan 2023

References

  • Smolen DA JS, McInnes IB, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–2038.
  • Huang J, Fu X, Chen X, et al. Promising therapeutic targets for treatment of rheumatoid arthritis. Front Immunol. 2021;12:686155.
  • Kondo N, Kuroda T, Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci. 2021;22(20):10922.
  • Mueller AL, Payandeh Z, Mohammadkhani N, et al. Recent advances in understanding the pathogenesis of rheumatoid arthritis: new treatment strategies. Cells. 2021;10(11):3017.
  • Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet. 2017;389(10086):2338–2348.
  • Zuo Y, Deng GM. Fc gamma receptors as regulators of bone destruction in inflammatory arthritis. Front Immunol. 2021;12:688201.
  • Liu S, Guo Y, Lu L, et al. Fibrinogen-like protein 1 is a novel biomarker for predicting disease activity and prognosis of rheumatoid arthritis. Front Immunol. 2020;11:579228.
  • Tavasolian F, Moghaddam AS, Rohani F, et al. Exosomes: effectual players in rheumatoid arthritis. Autoimmun Rev. 2020;19(6):102511.
  • Chen Z, Wang H, Xia Y, et al. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol. 2018;201(8):2472–2482.
  • Wang J, Yan S, Yang J, et al. Non-coding RNAs in rheumatoid arthritis: from bench to bedside. Front Immunol. 2019;10:3129.
  • Payandeh Z, Pirpour Tazehkand A, Azargoonjahromi A, et al. The role of cell organelles in Rheumatoid arthritis with focus on exosomes. Biol Proced Online. 2021;23(1):20.
  • Withrow J, Murphy C, Liu Y, et al. Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2016;18(1):286.
  • Wang S, Zha X, Ruan S, et al. Kruppel like factor 10 up-regulates PDZ and LIM domain containing protein 2 via nuclear factor kappa-B pathway to inhibit proliferation and inflammatory of fibroblastoid synovial cell in rheumatoid arthritis. Bioengineered. 2022;13(1):1779–1790.
  • Liu H, Li R, Liu T, et al. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020;11:1912.
  • Wang L, Huang S, Li S, et al. Efficacy and safety of umbilical cord mesenchymal stem cell therapy for Rheumatoid arthritis patients: a prospective phase I/II study. Drug Des Devel Ther. 2019;13:4331–4340.
  • Lopez-Santalla M, Fernandez-Perez R, Garin MI. Mesenchymal stem/stromal cells for Rheumatoid Arthritis treatment: an update on clinical applications. Cells. 2020;9(8):1852.
  • Qian W, Zhao M, Wang R, et al. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol. 2021;14(1):147.
  • Wang J, Sanmamed MF, Datar I, et al. Fibrinogen-like protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell. 2019;176(1–2):334–347 e12.
  • Zhang WT, Liu TT, Wu M, et al. Development of a nanobody-based immunoassay for the sensitive detection of fibrinogen-like protein 1. Acta Pharmacol Sin. 2021;42(11):1921–1929.
  • Maruhashi T, Sugiura D, Okazaki IM, et al. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity. Immunity. 2022;55(5):912–924 e8.
  • Yu J, Li J, Shen J, et al. The role of fibrinogen-like proteins in cancer. Int J Biol Sci. 2021;17(4):1079–1087.
  • Zou Z, Cai Y, Chen Y, et al. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep. 2015;12(2):2089–2097.
  • Liu XH, Qi LW, Alolga RN, et al. Implication of the hepatokine, fibrinogen-like protein 1 in liver diseases, metabolic disorders and cancer: the need to harness its full potential. Int J Biol Sci. 2022;18(1):292–300.
  • Lin WW, Ho KW, Su HH, et al. Fibrinogen-like protein 1 serves as an anti-inflammatory agent for collagen-induced arthritis therapy in mice. Front Immunol. 2021;12:767868.
  • Shen C, Kuang Y, Xu S, et al. Nitidine chloride inhibits fibroblast like synoviocytes-mediated rheumatoid synovial inflammation and joint destruction by targeting KCNH1. Int Immunopharmacol. 2021;101(Pt A):108273.
  • Yan F, Zhong Z, Wang Y, et al. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J Nanobiotechnology. 2020;18(1):115.
  • Zhu L, Kalimuthu S, Gangadaran P, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. 2017;7(10):2732–2745.
  • Hsueh MF, Zhang X, Wellman SS, et al. Synergistic Roles of Macrophages and Neutrophils in Osteoarthritis Progression. Arthritis Rheumatol. 2021;73(1):89–99.
  • Kaihara K, Nakagawa S, Arai Y, et al. Sustained hypoxia suppresses joint destruction in a rat model of rheumatoid arthritis via negative feedback of hypoxia inducible factor-1alpha. Int J Mol Sci. 2021;22(8):3898.
  • Weinberger A, Halpern M, Zahalka MA, et al. Placental immunomodulator ferritin, a novel immunoregulator, suppresses experimental arthritis. Arthritis Rheum. 2003;48(3):846–853.
  • Shiozaki A, Ariyoshi Y, Iitaka D, et al. Functional analysis and clinical significance of sodium iodide symporter expression in gastric cancer. Gastric Cancer. 2019;22(3):473–485.
  • Sunil C, Zheng X, Yang Z, et al. Antifatigue effects of Hechong (Tylorrhynchus heterochaetus) through modulation of Nrf2/ARE- mediated antioxidant signaling pathway. Food Chem Toxicol. 2021;157:112589.
  • Petrovska N, Prajzlerova K, Vencovsky J, et al. The pre-clinical phase of rheumatoid arthritis: from risk factors to prevention of arthritis. Autoimmun Rev. 2021;20(5):102797.
  • MacDonald IJ, Huang CC, Liu SC, et al. Targeting CCN proteins in rheumatoid arthritis and osteoarthritis. Int J Mol Sci. 2021;22(9):4340.
  • Lee ES, Sul JH, Shin JM, et al. Reactive oxygen species-responsive dendritic cell-derived exosomes for rheumatoid arthritis. Acta Biomater. 2021;128:462–473.
  • Alghamdi M, Alamry SA, Bahlas SM, et al. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci. 2021;79(1):25.
  • Huldani H, Abdalkareem Jasim S, Olegovich Bokov D, et al. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. Int Immunopharmacol. 2022;106:108634.
  • Tian X, Wei W, Cao Y, et al. Gingival mesenchymal stem cell-derived exosomes are immunosuppressive in preventing collagen-induced arthritis. J Cell Mol Med. 2022;26(3):693–708.
  • Shin MJ, Park JY, Lee DH, et al. Stem cell mimicking nanoencapsulation for targeting arthritis. Int J Nanomedicine. 2021;16:8485–8507.
  • Cosenza S, Toupet K, Maumus M, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018;8(5):1399–1410.
  • Vizoso FJ, Eiro N, Costa L, et al. Mesenchymal stem cells in homeostasis and systemic diseases: hypothesis, evidences, and therapeutic opportunities. Int J Mol Sci. 2019;20(15):3738.
  • Wang S, Lei B, Zhang E, et al. Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: from basic to clinics. Int J Nanomedicine. 2022;17:1757–1781.
  • Martinez-Arroyo O, Ortega A, Forner MJ, et al. Mesenchymal stem cell-derived extracellular vesicles as non-coding RNA therapeutic vehicles in autoimmune diseases. Pharmaceutics. 2022;14(4):733.
  • Xie C, Jiang J, Liu J, et al. Ginkgolide B attenuates collagen-induced rheumatoid arthritis and regulates fibroblast-like synoviocytes-mediated apoptosis and inflammation. Ann Transl Med. 2020;8(22):1497.
  • Du H, Zhang X, Zeng Y, et al. A novel phytochemical, DIM, inhibits proliferation, migration, invasion and TNF-alpha induced inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis Patients by targeting MAPK and AKT/mTOR signal pathway. Front Immunol. 2019;10:1620.
  • Shi W, Zheng Y, Luo S, et al. METTL3 promotes activation and inflammation of FLSs through the NF-kappaB signaling pathway in rheumatoid arthritis. Front Med (Lausanne). 2021;8:607585.
  • Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651.
  • Fan Y, Mao R, Yang J. NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 2013;4(3):176–185.
  • Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-kappaB signaling pathways. Nat Immunol. 2011;12(8):695–708.
  • Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell. 2017;168(1–2):37–57.
  • Hayden MS, Ghosh S. NF-kappaB in immunobiology. Cell Res. 2011;21(2):223–244.
  • Criswell LA. Gene discovery in rheumatoid arthritis highlights the CD40/NF-kappaB signaling pathway in disease pathogenesis. Immunol Rev. 2010;233(1):55–61.
  • Shu C, Chen J, Lv M, et al. Plumbagin relieves rheumatoid arthritis through nuclear factor kappa-B (NF-kappaB) pathway. Bioengineered. 2022;13(5):13632–13642.
  • Giannini D, Antonucci M, Petrelli F, et al. One year in review 2020: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2020;38(3):387–397.
  • Yan Q, Lin HM, Zhu K, et al. Immune checkpoint FGL1 expression of circulating tumor cells is associated with poor survival in curatively resected hepatocellular carcinoma. Front Oncol. 2022;12:810269.
  • Lv Z, Cui B, Huang X, et al. FGL1 as a novel mediator and biomarker of malignant progression in clear cell renal cell carcinoma. Front Oncol. 2021;11:756843.