4,661
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in microbial engineering approaches for wastewater treatment: a review

, , , , , , , , , , & show all
Article: 2184518 | Received 27 Jul 2022, Accepted 14 Sep 2022, Published online: 27 Jul 2023

References

  • Van Vliet MT, Flörke M, Wada Y. Quality matters for water scarcity. Nat Geosci. 2017;10(11):800–1290 802.
  • Yadav D, Rangabhashiyam S, Verma P, et al. Environmental and health impacts of contaminants of emerging concerns: recent treatment challenges and approaches. Chemosphere. 2021;272:129492.
  • Singh D, Goswami RK, Agrawal K, et al. Bioinspired remediation of wastewater: a contemporary approach for environmental clean up. Curr Res Green Sustain Chem. 2022;5:1–165.
  • Morin-Crini N, Crini G, editors. Eau xindustriellescontaminées. France: press universitaires de Franche-Comte; 2017. p. 513.
  • Dutta P, Bhakta S, Sahu E. et al. Analysis of growth and biochemical contents of microalgae grown with wastewater effluent of Emami paper mill Balasore, in: Role Microalgae Wastewater Treat. Singapore: Springer; 2019. pp. 153–168.
  • Sarawaneeyaruk S, Lorliam W, Krajangsang S, et al. Enhancing plant growth under municipal wastewater irrigation by plant growth promoting rhizospheric Bacillus spp. J King Saud Univ Sci. 2019;31(3):384–389.
  • Khanal SK, Giri B, Nitayavardhana S, et al. Anaerobic bioreactors/digesters: design and development. In: Venkataramana G, editor. Current developments in biotechnology and bioengineering. Elsevier; 2017. pp. 261–279.
  • Qadri H, Bhat RA, Mehmood MA, et al. Fresh-water pollution dynamics and remediation. Fresh Water Pollut Dyn Rem. Sringer singapore; 2020. p. 1–13.
  • Sanda BY, Ibrahim I. Causes, categories and control of water pollution. Int J Sci Eng Sci. 2020;4(9):84–90.
  • Jabeen A, Huang X, Aamir M. The Challenges of Water Pollution, Threat to Public Health, Flaws of Water Laws and Policies in Pakistan. J Water Resource Prot. 2015;7(December):1516–1526.
  • Singh SK. Water pollution in developing countries. Nat Con Inn Res CPMSED-2015. 2015;1:1–5.
  • Javier MS, Sara MZ, Hugh T. Water pollution from agriculture: a global review ||. The Food and Agriculture Organization of the United NationsRome, 2017 and the International Water Management Institute. FAO and IWMI; 2017.
  • Dwivedi AK. Researches in Water Pollution: a Review. Int Res J Nat Sci. 2017;4(1):34–42.
  • Collivignarelli MC, Abbà A, Benigna I, et al. Overview of the main disinfection 890 processes for wastewater and drinking water treatment plants. Sustainability. 2018;10(1):86.
  • Samer M., editor. Wastewater Treatment Engineering; 2015.
  • Sikosana ML, Sikhwivhilu K, Moutloali R, Madriya DM(2019). Municipal wastewater treatment technologies:Areview. Procedia Manufacturing. 35;1018–1024.
  • Chang JS, Chou C, Lin Y, et al. Kinetic characteristics of bacterial azo dye decolorization by Pseudomonas luteola. Water Res. 2001;35:2041.
  • Rajesh Banu J, Kaliappan S. Treatment of tannery wastewater using hybrid upflow anaerobic sludge blanket reactor. J Environ Eng Sci. 2007;6:415–421.
  • Cheah WY, Show PL, Yap YJ, et al. Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered. 2020;11(1):61–69.
  • Pachaiappan R, Cornejo-Ponce L, Rajendran R, et al. A review on biofiltration techniques: recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered. 2022;13(4):8432–8477.
  • Chattopadhyay I, Usman TM, Varjani S. Exploring the role of microbial biofilm for industrial effluents treatment. Bioengineered. 2022;13(3):6420–6440.
  • Zhang B, Yu Q, Yan G, et al. Seasonal bacterial community succession in four typical wastewater treatment plants: correlations between core microbes and process performance. Sci Rep. 2018;8:1–11.
  • Guibaud G, van Hullebusch E, Bordas F. Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modelling. Chemosphere. 2006;64(11):1955–1962.
  • Zhuang WQ, Fitts JP, Ajo-Franklin CM, et al. Recovery of critical metals using biometallurgy. Curr Opin Biotechnol. 2015;33:327–335.
  • Šoštarić TD, Petrović MS, Pastor FT, et al. Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. J Mol Liq. 2018;259:340–349.
  • Gadd GM. Biosorption: critical review of scientific rationale, environmental impor‐ tance and significance for pollution treatment. J Chem Technol Biot. 2009;84(1):13–28.
  • Fomina M, Gadd GM. Biosorption: current perspectives on concept, definition and application. Biores Technol. 2014;160:3–14.
  • Aktar, K., Zerin, T., & Banik, A. (2019). Biodegradation of textile dyes by bacteria isolated from textile industry effluents. Stamford Journal of Microbiology, 9(1), 5–8.
  • Dixit S and Garg S(2019). Development of an efficient recombinant bacterium and its application in the degradation of environmentally hazardous azo dyes. International Journal of Science and Technology. 16; 7137–7146.
  • Srinivasan, S., Sadasivam, S. K., Gunalan, S., Shanmugam, G., & Kothandan, G. (2019). Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. Environmental Pollution, 248, 599–608.
  • Shindhal T, Rakholiya P, Varjani S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2021;12(1):70–87.
  • Kumar M, Borah P, Devi P. Priority and emerging pollutants in water. In: Devi P, Singh P, Kumar KK, editors. Inorganic pollutants in water. UK: Elsevier; 2020. pp. 33–49.
  • Ojha N, Kara R, Abbas S, et al. Bioremediation of industrial waste water: a review. IOP Conf Ser: Earth Environ Sci. 2021;796:1.
  • Azubuike CC, Chikere CB, Okpokwasili GC. Bioremediation techniques– classification based on site of application: principles, advantages, limitations, and prospects. World J Microbiol Biotechnol. 2016;32(11):180.
  • Simpson DR. Biofilm processes in biologically active carbon water purification. Water Res. 2008;42:2839–2848.
  • Pandey VC, Singh J, Singh D, et al. Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol. 2014;11:241–250.
  • Han B, Zhang S, Zhang L, et al. Characterization of microbes and denitrifiers attached to two species of floating plants in the wetlands of Lake Taihu. PLoS ONE. 2018;13(11):e0207443.
  • Idi A, Nor MHM, Wahab MFA, et al. Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Rev Environ Sci Bio/Technol. 2015;14(2):271–285.
  • Liu W-L, Guan M, Liu S-Y, et al. Fungal denitrification potential in vertical flow microcosm wetlands as impacted by depth stratification and plant species. Ecol Eng. 2015;77:163–171.
  • Srivastava P, Yadav AK, Mishra BK. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland. Bioresour Technol. 2015;195:223–230.
  • Un, U. T., & Ocal, S. E. (2015). Removal of heavy metals (Cd, Cu, Ni) by electrocoagulation. International Journal of Environmental Science and Development, 6(6), 425.
  • Shahid MJ, AL-Surhanee AA, Kauadri F, et al. Role of microorganisms in the remediation of wasteland in floating treatment wetlands: a review. Sustainibility. 2020;12:5559.
  • Volesky B, Holan ZR. Biosorption of heavy metals. Biotechnol Prog. 1995;11:235–250.
  • Pandey AK, Sarada DV, Kumar A Microbial decolorization and degradation of reactive red 198. Proceedings of the National Academy of Sciences; Washington, DC; 2016. p. 805–815.
  • Singh S, Kumar V, Upadhyay N, Singh J, Singla S, Datta S(2017). Efficient biodegradation of acephate by Pseudomonas pseudocaligenes PS-5 in the presence and absense of heavy metal ions[Cu(II) and Fe(III) and humic acid. Biotech 7(4):262.
  • Elliott A, Hanby W, Malcolm B. The near infra-red absorption spectra of natural and synthetic fibres. Br J Appl Phys. 1954;5:377.
  • Doble M, Kumar A. Biotreatment of industrial effluents. Resour Conserv recycl. 2007;51(2):507–508.
  • Hassaan MA, El Nemr A. Advanced OxidationProcesses for textile wastewater treatment. Int J Photochem Photobiol. 2017;511:507–508.
  • Thakur JK, Paul S, Dureja P, et al. Degradation of sulphonated azo dye red HE7B by Bacillus sp. and elucidation of degradative pathways. Curr Microbiol. 2014;69:183–191.
  • Du L-N, Li G, Zhao Y-H, et al. Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: characteristics and partial mechanism. Int Biodeterior Biodegrad. 2015;105:66–72.
  • Xu F, Mou Z, Geng J, et al. Azo dye decolorization by a halotolerant exoelectrogenic decolorizer isolated from marine sediment. Chemosphere. 2016;158:30–36.
  • Neifar M, Chouchane H, Mahjoubi M, et al. Pseudomonas extremorientalis BU118: a new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. Biotech. 2016;3(6):107.
  • Srinivasan S, Shanmugam G, Surwase SV, et al. In silico analysis of bacterial systems for textile azo dye decolorization and affirmation with wetlab studies. Clean (Weinh). 2017;45(9):1600734.
  • Srinivasan S, Sadasivam SK. Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. J Water Process Eng. 2018;22:180–191.
  • Basutkar MR, Fatima N, Chakra P, et al. Decolorisation of reactive red 120 azo dye by micrococcus sp. Int J Adv Res Biol Sci. 2019;6(5):118–125.
  • Franca RDG, Vieira A, Carvalho G, et al. Oerskovia'paurometabola can efficiently decolorize azo dye acid red 14 and remove its recalcitrant metabolite. Ecotoxicol Environ Saf. 2020;191:110007.
  • Masarbo RS, Karegoudar TB. Decolourisation of toxic azo dye fast red E by three bacterial strains: process optimisation and toxicity assessment. Int J Environ Anal Chem. 2020;51(2): 507–508 .
  • Joshi AU, Hinsu AT, Kotadiya RJ, et al. Decolorization and biodegradation of textile di-azo dye acid blue 113 by Pseudomonas stutzeri AK6. 2020; 3 Biotech.
  • Srinivasan S, Sadasivam SK. Biodegradation of textile azo dyes by textile effluent non-adapted and adapted Aeromonas hydrophila. Environ Res. 2021;194:110643.
  • Chen G, An X, Li H, et al. Detoxification of azo dye direct black G by thermophilicAnoxybacillus sp. PDR2 and its application potential in bioremediation. Ecotoxicol Environ Saf. 2021;214:112084.
  • Hassaan, M. A., & El Nemr, A. (2017). Advanced oxidation processes for textile wastewater treatment. International Journal of Photochemistry and Photobiology, 2(3), 85–93.
  • Wuhrmann K, Mechsner K, Kappeler T. Investigations on rate determining factors in the microbial reduction of azo dyes. Eur J Appl Microbiol Biotechnol. 1980;9:325–338.
  • Lin J, Zhang X, Li Z, et al. Biodegradation of reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresour Technol. 2010;101(1):34–40.
  • Sarayu K, Sandhya S. Aerobic biodegradation pathway for remazol orange by Pseudomonas aeruginosa. Appl Biochem Biotechnol. 2010;160(4):1241–1253.
  • Khandare RV, Govindwar SP. Microbial degradation mechanism of textile dye and its metabolic pathway for environmental safety. In: Chandra R, editor. Environmental waste management. UK: CRC Press; 2015.
  • Chang, J. S., Chou, C., Lin, Y. C., Lin, P. J., Ho, J. Y., & Hu, T. L. (2001). Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water research, 35(12), 2841–2850.
  • Nachiyar CV, Rajkumar GS. ‘Degradation of tannery and textile dye, navian fast blue S5R by Pseudomonas aerugenosa. World J Microbiol Biotechnol. 2003;19:609.
  • Colwell RR, Walker JD, Cooney JJ. Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol. 1977;5(4):423–445.
  • Cooney JJ, Silver SA, Beck EA. Factors influencing hydrocarbon degradation in three freshwater lakes. Microb Ecol. 1985;11(2):127–137.
  • Perry JJ. Microbial metabolism of cyclic alkanes. In: Atlas R, editor. Petroleummicrobiology. New York, NY, USA: Macmillan; 1984. pp. 61–98.
  • HJ UWR, Reed G, editors. Contaminant soil areas, different countries and contaminant monitoring of contaminants. environmental process II. Soil decontamination biotechnology. WILEY‐VCH Verlag GmbH; 2000; Vol. 11: pp. 5–42.
  • Atlas R, Bragg J. Bioremediation of marine oil spills: when and when not—the Exxon Valdez experience. Microb Biotechnol. 2009;2(2):213–221.
  • Throne-Holst M, Wentzel A, Ellingsen TE, et al. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl environ microbiol. 2007;73(10):3327–3332.
  • Daugulis AJ, McCracken CM. Microbial degradation of high and low molecular weight polyaromatic hydrocarbons in a two-phase partitioning bioreactor by two strains of Sphingomonas sp. Biotechnol Lett. 2003;25(17):1441–1444.
  • Pinholt Y, Struwe S, Kjoller A. Microbial changes during oil decomposition in soil. Holarctic Ecol. 1979;2:195–200.
  • Mulkins Phillips GJ, Stewart JE. Distribution of hydrocarbon utilizing bacteria in Northwestern Atlantic waters and coastal sediments. Can J Microbiol. 1974;20(7): 955–962. PubMed] [Google Scholar.
  • Ilori MO, Amobi CJ, Odocha AC. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere. 2005;61(7):985–992.
  • Obayori OS, Ilori MO, Adebusoye SA, et al. Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J Microbiol Biotechnol. 2009;25(9): 1615–1623. Google Scholar.
  • Brusseau ML, Miller RM, Zhang Y, et al. Biosurfactant and cosolvent enhanced remediation of contaminated media. ACS Symp Ser. 1995;594:82–94. Google Scholar.
  • Nikolopoulou M, Kalogerakis N. Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biot. 2009;84(6):802–807.
  • Sathishkumar P, Meena RAA, Palanisami T, et al. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota-a review. Sci Total Environ. 2020;698:134057.
  • Narayanan M, El-Sheekh M, Ma Y, et al. Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem. Environ Pollut. 2022;300:118922.
  • Dhodapkar RS, Gandhi KN. Pharmaceuticals and personal care products in aquatic environment: chemicals of emerging concern? Pharm Pers Care Prod: Waste Manage Treat Technol. Chennai, India: Elsevier-Butterworth-Heinemann; 2019; pp. 63–85.
  • Chojnacka K, Skrzypczak D, Izydorczyk G, et al. Biodegradation of pharmaceuticals in photobioreactors–a systematic literature review. Bioengineered. 2022;13(2):4537–4556.
  • Amran RH, Jamal MTPugazhendi A, AL-Harbi M, Gandhourah M, Al-Otaibi A and Haque MF(2021). Biodegradation and Bioremediation of Petroleum hydrocarbons in marine Ecosystems by microorganisms. A review. Nature Environment and Pollution Technology, 21(3):1149–1157.
  • Castelo-Grande T, Augusto PA, Monteiro P, et al. Remediation of soils contaminated with pesticides: a review. Int J Environ Analyt Chem. 2010;90:438–467.
  • UNEP. Riding the world of POPs: a guide on the Stockholm convention on persistent organic pollutants. 2005. Available online: (accessed on 20 September 2016). http://www.pops.int/documents/guidance/beg_guide.pdf.
  • UNEP. The hazardous chemicals and waste conventions; WHO: Rome, Italy. UNEPFAO Nairobi, KenyaGeneva, Switzerland. 2013. Available online accessed on 5 March 2013. http://www.pops.int/documents/background/hcwc.pdf
  • Nawaz K, Hussain K, Choudary N, et al. Lashari MI. Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res. 2011;5(3):177–183.
  • Bilal M, Iqbal HM, Barceló D. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. Sci Total Environ. 2019;695:133896.
  • Sun Y, Kumar M, Wang L, et al. Biotechnology for soil decontamination: opportunity, challenges, and prospects for pesticide biodegradation. In:Pacheco-Torgal F, Ivanov V, Tsang DC, editors. Bio-based materials and biotechnologies for eco-efficient construction. United Kingdom: Woodhead Publishing; 2020. pp. 261–283.
  • Tarla DN, Erickson LE, Hettiarachchi GM, et al. Phytoremediation and bioremediation of pesticide-contaminated soil. Appl Sci. 2020;10(4):1217.
  • Mohamed AT, El Hussein AA, El Siddig MA, et al. Degradation of oxyfluorfen herbicide by soil microorganisms: biodegradation of herbicides. Biotechnol. 2011;10:274–279.
  • Gadipelly C, Pérez-González A, Yadav GD, Ortiz I, Ibanez R, Rathod VK, Marathe KV (2014) Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind Eng Chem Res 53(29):11571–11592. https://doi.org/10.1021/ie501210j.
  • Hussaini S, Shaker M, Asef M. Isolation of bacterial for degradation of selected pesticides. Bull Environ Pharmacol Life Sci. 2013;2:50–53.
  • Singh M. Green remediation. Tool for safe and sustainable environment: a review. Appl Water Sci. 2017a;7:2629–2635.
  • da Silva Rodrigues, D. A., da Cunha, C. C. R. F., Freitas, M. G., de Barros, A. L. C., Neves, P. B., Pereira, A. R., … & Afonso, R. J. D. C. F. (2020). Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents. Science of The Total Environment, 749, 141441.
  • Alvarez LH. Influence of redox mediators and salinity level on the (bio)transformation of direct blue 71: kinetics aspects. J Environ Manag. 2016;183:84–89.
  • Muthusaravanan S, Sivarajasekar N, Vivek JS, et al. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett. 2018;16:1339–1359.
  • Ahemad M, Malik A. Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J. 2011;2:12–21.
  • Gaur VK, Sharma P, Gaur P, et al. Sustainable mitigation of heavy metals from effluents: toxicity and fate with recent technological advancements. Bioengineered. 2021;12(1):7297–7313.
  • Guo W, Ngo H-H, Dharmawan F, et al. Roles of polyurethane foam in aerobic moving and fixed bed bioreactors. Bioresour Technol. 2010;101:1435–1439.
  • Shin CJ, Nam JM, Kim JG. Floating mat as a habitat of Cicuta virosa, a vulnerable hydrophyte. Landsc Ecol Eng. 2015;11:111–117.
  • Rajkumar M, Ae N, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere. 2009;77:153–160.
  • Zhao F, Yang W, Zeng Z, et al. Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass Bioenergy. 2012;42:212–218.
  • Wu H, Zhang J, Li P, et al. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecol Eng. 2011;37:560–568.
  • Wang C-Y, Sample DJ. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds. J Environ Manag. 2014;137:23–35.
  • Mónica, P., Darwin, R. O., Manjunatha, B., Zúñiga, J. J., Diego, R., Bryan, R. B., … & Maddela, N. R. (2016). Evaluation of various pesticides-degrading pure bacterial cultures isolated from pesticide-contaminated soils in Ecuador. African Journal of Biotechnology, 15(40), 2224–2233.
  • Igiri BE, Okuduwa SIR, Idoko GO, et al. Toxicity and bioremediation of heavy metals contaminated ecosystems from tannery wastewater: a review. Hindawi J Toxicol. 2018;2018:2568038.
  • Rajkumar M, Ae N, Prasad MNV, et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010;28:142–149.
  • Kumar A, Bisht BS, Joshi VD, et al. Review on bioremediation of polluted environment: a management tool. International Journal of Environmental Sciences. 2011;1:1079–1093.
  • Muneer B, Iqbal MJ, Shakoori FR, et al. Tolerance and biosorption of mercury by microbial consortia: potential use in bioremediation of wastewater. Pak J Zool. 2013;45(1):247–254.
  • Oshima T, Kondo K, Ohto K, et al. Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. React Funct Polym. 2008;68:376–383.
  • Marchal M, Briandet R, Koechler S, et al. Effect of arsenite on swimming motility delays surface colonization in Herminiimonasarsenicoxydans. Microbiology. 2010;156:2336–2342.
  • Sinha SN, Biswas M, Paul D, et al. Biodegradation potential of bacterial isolates from tannery effluent with special reference to hexavalent chromium. Biotechnol bioinforma bioeng. 2011;1:381–386.
  • Priyalaxmi R, Murugan A, Raja P, et al. Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. Int J Curr Microbiol App Sci. 2014;3:326–335.
  • Sinha SN, Biswas K. Bioremediation of lead from river water through lead-resistant purple-nonsulfur bacteria. Global J Microbiol Biotechnol. 2014;2:11–18.
  • Boonsong K and Chansiri M(2008). Domestic wastewater treatment using vetiver grass cultivated with floating platform technique. AU J. Technology;12:73–80.
  • Wu YH, Zhou P, Cheng H, et al. Draft genome sequence of Microbacteriumprofundi Shh49T, an Actinobacterium isolated from deep-sea sediment of a polymetallic nodule environment. Genome Announce. 2015;3:1–2.
  • Sofu A, Sayilgan E, Guney G. Experimental design for removal of Fe (II) and Zn (II) ions by different lactic acid bacteria biomasses. Int J Environ Res. 2015;9:93–100. 201.
  • Guo Y, Huang T, Wen G, et al. The simultaneous removal of ammonium and manganese from groundwater by iron-manganese co-oxide filter film: the role of chemical catalytic oxidation for ammonium removal. Chem Eng J. 2017;308:322–329.
  • Fauziah SH. Assessing the bioaugmentation potentials of individual isolates from landfill on metal-polluted soil. Environ Earth Sci. 2017;76:401.
  • Pugazhendhi A, Boovaragamoorthy GM, Ranganathan K, et al. New insight into effective biosorption of lead from aqueous solution using Ralstonia solanacearum: characterization and mechanism studies. J Clean Prod. 2018;174:1234–1239.
  • Pramanik K, Mitra S, Sarkar A, et al. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J Hazard Mater. 2018;351:317–329.
  • Lakshmi S, Suvedha K, Sruthi R, et al. Hexavalent chromium sequestration from electronic waste by biomass of Aspergillus carbonarius. Bioengineered. 2020;11(1):708–717.
  • Agrawal K, Verma P. Myco-valorization approach using entrapped Myrothecium verrucaria ITCC-8447 on synthetic and natural support via column bioreactor for the detoxification and degradation of anthraquinone dyes. Int Biodeterior Biodegrad. 2020;153:105052.
  • Espinosa EJ, Rene ER, Pakshirajan K, et al. Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chem Eng J. 2016;283:553–571.
  • Gayathiri E, Prakash P, Selvam K, et al. Plant microbe-based remediation approaches in dye removal: a review. Bioengineered. 2022;13(3):7798–7828.
  • Singh AK, Bilal M, Iqbal HMN, et al. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: status, opportunities and challenges. Sci Total Environ. 2021;777:145988.
  • Assress HA, Selvarajan R, Nyoni H, et al. Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants. Sci Rep. 2019;9:1–15.
  • Borne KE, Fassman-Beck EA, Tanner CC. Floating treatment wetland influences on the fate of metals in road runoff retention ponds. Water Res. 2014;48:430–442.
  • Park D, Yun Y-S, Jo JH, et al. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillusniger. Water Res. 2005;39(4):533–540.
  • Luna JM, Rufno RD, Sarubbo LA. Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process SafEnviron Prot. 2016;102:558–566.
  • Donmez G, Aksu Z. Bioaccumulation of copper(ii) and nickel(ii) by the non-adapted and adapted growing Candida SP. Water Res. 2001;35(6):1425–1434.
  • Ashokkumar P, Loashini VM, Bhavya V. Effect of pH, Temperature and biomass on biosorption of heavy metals by Sphaerotilusnatans. Int J Microbiol Mycol. 2017;6(1):32–38.
  • Achal V, Kumari D, Pan X. Bioremediation of chromium contaminated soil by a brown-rot fungus, Gloeophyllumsepiarium. Res J Microbiol. 2011;6(2):166–171.
  • Bhattacharya A, Gupta A, Kaur A, Malik D (2014) Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Appl Microbiol Biotechnol 98:9829–9841.
  • Magyarosy A, Laidlaw R, Kilaas R, et al. Nickel accumulation and nickel oxalate precipitation by Aspergillusniger. Appl Microbiol Biotechnol. 2002;59(2–3):382–388.
  • Benazir, J. F., Suganthi, R., Rajvel, D., Pooja, M. P., & Mathithumilan, B. (2010). Bioremediation of chromium in tannery effluent by microbial consortia. African journal of biotechnology, 9(21), 3140–3143.
  • Bhargava RN and Mishra S(2018). Hexavalent Chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotox. Environ Saf. 147:102–109.
  • Salehizadeh H, Shojaosadati SA. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res. 2003 Oct;37(17):4231–5. doi: 10.1016/S0043-1354(03)00418-4. PMID: 12946905.
  • Gros M, Cruz-Morato C, Marco-Urrea E, et al. Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Res. 2014;60:228–241.
  • Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraiselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 146(1–2), 270–277. https://doi.org/10.1016/j.jhazmat.2006.12.017.
  • Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraiselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 146(1–2), 270–277. https://doi.org/10.1016/j.jhazmat.2006.12.017.
  • Jafari, S. A., Cheraghi, S., Mirbakhsh, M., Mirza, R., & Maryamabadi, A. (2015). Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran. CLEAN–Soil, Air, Water, 43(1), 118–126. https://doi.org/10.1002/clen.201300616.
  • Al-Garni, S. M., Ghanem, K. M., & Ibrahim, A. S. (2010). Biosorption of mercury by capsulated and slime layerforming Gram-ve bacilli from an aqueous solution. African Journal of Biotechnology, 9(38), 6413–6421.
  • Jafari, S. A., Cheraghi, S., Mirbakhsh, M., Mirza, R., & Maryamabadi, A. (2015). Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran. CLEAN–Soil, Air, Water, 43(1), 118–126. https://doi.org/10.1002/clen.201300616.
  • Salehizadeh H, Shojaosadati SA. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res. 2003 Oct;37(17):4231–5. doi: 10.1016/S0043-1354(03)00418-4. PMID: 12946905.
  • Badia-Fabregat M, Lucas D, Pereira MA, et al. Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment. Appl Microbiol Biotechnol. 2016;100:2401–2415.
  • Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S, et al. Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res. 2013;47:5200–5210.
  • Å S, Hedeland M, Arvidsson T, et al. Identification of leachables from Trametes versicolor in biodegradation experiments. Trends Green Chem. 2018;4:1–4.
  • Palli L, Castellet-Rovira F, Péerez-Trujillo M, et al. Preliminary evaluation of pleurotus ostreatus for the removal of selected pharmaceuticals from hospital wastewater. Biotechnol Prog. 2017;33:1529–1537.
  • Molla AH, Fakhru’l-Razi A, Hanafi MM, et al. Potential nonphytopathogenic filamentous fungi for bioconversion of domestic wastewater sludge. J Environ Sci Heal Part A. 2002;37(8):1495–1507.
  • Kang Y, Xu X, Pan H, et al. Decolorization of Mordant yellow 1 using Aspergillus sp. TS-A CGMMC 12964 by Biosorption and Biodegradation. 2018;9(1):222–232.
  • Andleeb S, Atiq N, Robson GD, et al. An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ Sci Pollut Res. 2012;19:1728–1737.
  • Ibrahim NN, Talib SA, Ismail HN, et al. Decolorization of reactive red-120 by using macrofungus and microfungus Research article special issue. J Fundam Appl Sci. 2018;9(6S):954–964.
  • Khan R, Fulekar MH. Mineralization of a sulfonated textile dye reactive red 31 from simulated wastewater using pellets of Aspergillusbombycis. Bioresour Bioprocess. 2017;4:1–11.
  • Asses N, Ayed L, Hkiri N, et al. Congo red DecolorizationandDetoxification by Aspergillus niger: removal mechanisms and dye degradation pathway Nedra asses. BioMed Res Int. 2018. DOI:10.1155/2018/3049686
  • Dayi B, Onac C, Kaya A, et al. New type biomembrane: transport and biodegradation of reactive textile dye. J Phys Chem Lett. 2020;5(7):9813–9819.
  • Sheam MM, Biswas SK, Ahmed K, et al. Mycoremediation of reactive red H37B dye by Aspergillussalinarus isolated from textile effluents. Curr res Microbial Sci. 2021;2:100056.
  • Gao T, Qin D, Zuo S, et al. Decolorisation and detoxification of triphenylmethane dyes by isolated endophytic fungus, Bjerkandertaadusta SWUSI4 under non nutritive conditions. Bioresources Bioprocess. 2020;7(53). DOI:10.1186/s40643-020-00340-8
  • Machado MD, Soares EV, Soares HM. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. Journal of Haz‐ Ardous Materials. 2010;180(1–3):347–353.
  • Namara CJ, Anastasiou CC, O’flaherty V, et al. Bioremediation of olive mill wastewater. Int Biodeterior Biodegrad. 2008;61(2):127–134.
  • Bhakta JN, Munekage Y, Ohnishi K, et al. Isolation and charac‐ terization of cadmium and arsenic-absorbing bacteria for bioremediation. Water Air Soil Pollut. 2014;225 2150–2159. DOI:10.1007/s11270-014-2151-2
  • Goswami RK, Agrawal K, Verma P. Microalgae-based biofuel-integrated biorefinery approach as sustainable feedstock for resolving energy crisis. In: Srivastava V, editor. Bioenergy research: commercial opportunities and challenges, Clean Energy Production Technologies. Singapore: Springer; 2021. pp. 267–293.
  • Salama ES, Kurade MB, Abou-Shanab RAI, et al. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation, Renew. Sustain Energy Rev. 2017;79:1189–1211.
  • Darda S, Papalas T, Zabaniotou A. Biofuels journey in Europe: currently the way to low carbon economy sustainability is still a challenge. J Clean Prod. 2019;208:575–588.
  • Ajayan KV, Selvaraju M, Thirugnanamoorthy K. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents. Pakistan J Biol Sci. 2011;14:805.
  • Manzoor M, Ma R, Shakir HA, et al. Microalgal-bacterial consortium: a cost-effective approach of wastewater treatment in Pakistan, Punjab Univ. J Zool. 2016;31:307–320.
  • Mehariya S, Goswami RK, Verma P, et al. Integrated approach for wastewater treatment and biofuel production in microalgae biorefineries. Energies. 2021;14:101747.
  • Goher ME, El-Monem AMA, Abdel-Satar AM, et al. Biosorption of some toxic metals from aqueous solution using nonliving algal cells of Chlorella vulgaris. J Elem. 2016;21(3):703–714.
  • Khan MJ, Rai A, Ahirwar A, et al. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered. 2021;12(2):9531–9549.
  • Shi J, Podola B, Melkonian M. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phyco. 2007;19:417–423.
  • De Godos I, Muñoz R, Guieysse B. Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater. 2012;229–230:446–449.
  • Maes HM, Maletz SX, Ratte HT, et al. Uptake, elimination, and biotransformation of 17α-ethinylestradiol by the freshwater alga Desmodesmussubspicatus. Environ Sci Technol. 2014;48:12354–12361.
  • Zhou GJ, Ying GG, Liu S, et al. Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ Sci. 2014;16:2018–2027.
  • Hom-Diaz A, Llorca M, Rodríguez-Mozaz S, et al. Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. J Environ Manag. 2015;155:106–113.
  • Salgueiro JL, Pérez L, Maceiras R, et al. Bioremediation of wastewater using chlorella vulgaris microalgae: phosphorus and organic matter. Int J Environment Res. 2016;10:465–470.
  • Fazal T, Mushtaq A, Rehman F, et al. Xu J. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew Sust Energ Rev. 2018;82:3107–3126.
  • Touliabah HE-S, El-Sheekh MM, Ismail MM, et al. A review of microalgae- and cyanobacteria-based biodegradation of organic pollutants. Molecules. 2022;27:1141.
  • Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011;2011:1–13.
  • Varjani S, Joshi R, Srivastava VK, et al. Treatment of wastewater from petroleum industry: current practices and perspectives. Environ Sci Pollut Res. 2020;80:1–9.
  • Das A, Mishra S. Removal of textile dye reactive green-19 using bacterial consortium: process optimization using response surface methodology and kinetics study. J Environ Chem Eng. 2017;5(1):612–627.
  • Asira E. Factors that determine bioremediation of organic compounds in the soil. Acad J Interdiscip Stud. 2013;2:125–128.
  • Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev. 2014;38:1091–1125.
  • Singh D, Goswami RK, Agrawal K, et al. BIoinspired remediation of wastewater: A contemporary approach for environmental cleanup. Current Research in Green and Sustainable Chemistry. 2022;5:100261.
  • Aragaw TA. Functions of various bacteria for specific pollutant degradation and their application in waste water treatment: a review. Int J Environ Sci Technol. 2020. DOI:10.1007/s13762-020-03022-2
  • Couto N, Fritt-Rasmussen J, Jensen PE, et al. Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility. Environ Sci Pollut Res. 2014;21:6221–6227.
  • Abatenah E, Gizaw B, Tsegaye Z, et al. The role of microorganisms in Bioremediation- a review. J Environ Biol. 2017;2(1):038–046.
  • Varjani S, Rakholiya P, Yong H, et al. Microbial degradation of dyes: an overview. Bioresour Technol. 2020;314:123728.
  • Pacwa-Płociniczak M, Płociniczak T, Iwan J, et al. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. J Environ Manag. 2016;168:175–184.
  • Nzila A. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: overview of studies, proposed pathways and future perspectives. Environ Pollut. 2018;239:788–802.
  • Ibrahim, N. N., Talib, S. A., Ismail, H. N., & Tay, C. C. (2017). Decolorization of reactive red-120 by using macrofungus and microfungus. Journal of Fundamental and Applied Sciences, 9(6S), 954–964.
  • Castillo-Carvajal LC, Sanz-Martín JL, Barragán-Huerta BE. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environ Sci Pollut Res. 2014;21:9578–9588.
  • Basutkar MR, Shivannavar CT. Decolorization study of reactive red-11 by using dye degrading bacterial strain Lysinibacillusboronitolerans CMGS-2. Int J Curr Microbiol App Sci. 2019;8(6):1135–1143.
  • Madhavi GN, Mohini DD. Review paper on – Parameters affecting bioremediation. Int J Life Sci Pharma Res. 2012;2:77–80.
  • Varjani SJ. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2017;223:277–286.
  • Oruganti RK, Katam K, Show PL, et al. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered. 2022;13(4):10412–10453.
  • Syed T, Batool U, Aslam M, et al. Bioremediation and decontamination potential of flagellate Poteriospumellasp, Ann. Finance. 2019;23:142–153.
  • Mamta BS, Rana MS, Raychaudhari S, et al. Algae and bacteria driven technologies for pharmaceutical remediation in wastewater. Removal of toxic pollutants through microbiological and tertiary treatment. Amsterdam, Netherlands: Elsevier; 2020.
  • Qi F, Jia Y, Mu R, et al. Convergent community structure of algal bacterial consortia and its effect on advanced wastewater treatment and biomass production. Sci Rep. 2021;11:21118.
  • Su Y, Mennerich A, Urban B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Bioresour Technol. 2012;105:67–73.
  • Du H. Water depletion of climax forests over humid karst terrain: patterns, controlling factors and implications. Agric Water Manag. 2021; DOI:10.1016/j.agwat.2020.106541.
  • Fontalvo NPM, Gamero WBM, ARdila HAM, et al. Removal of Nitrogeneous compounds from municipal waste water using a bacterial consortium: an opportunity for more sustainable water treatments. Water Air Soil Pollut. 2022;233:339.
  • Maqbool M, Bhatti HN, Sadaf S, Zahid M and Shahid M(2019). A robust approach towards green synthesis of Polyaniline -Scenedesmus biocomposite for waste water treatment applications. Material Research Express. 6(5).
  • Satiro J, Cunha A, Gomes AP, et al. Optimization of microalgae- bacteria consortium in the treatment of paper pulp waste water. Appl Sci. 2022;12:5799.
  • Rehman K, Imran A, Amin I, et al. Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere. 2018;217:576–583.
  • Tara N, Arslan M, Hussain Z, et al. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. J Clean Prod. 2019;217:541–548.
  • Varjani, S., Joshi, R., Srivastava, V. K., Ngo, H. H., & Guo, W. (2020). Treatment of wastewater from petroleum industry: current practices and perspectives. Environmental Science and Pollution Research, 27, 27172–27180.
  • Varjani, S., & Upasani, V. N. (2019). Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. Journal of environmental management, 245, 358–366.
  • Leong WH, AzellaZaine SN, Ho YC, et al. Impact of various microalgal bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production. J Environ Manag. 2019;249:109384.
  • Freitag DG. The use of effective microorganisms (EM) in organic waste management. 2000. DOI:10.1097/00007691-200002000-00006
  • Monica S, Karthik L, Mythill S, et al. Formulation of effective microbial consortia and; its application for sewage treatment. Microb Biochem Technol. 2011;3(3):51–55.
  • Solé A, Matamoros V. Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads. Chemosphere. 2016;164:516–523.
  • Vítˇezová M, Kohoutová A, Vítˇez T, et al. Methanogenic microorganisms in industrial wastewater anaerobic treatment. Processes. 2020;8:1546.
  • Vassalle L, García-Galán MJ, Aquino SF, et al. Can high-rate algal ponds be used as post-treatment of UASB reactors to remove micropollutants? Chemosphere. 2020;248:125969.
  • Xu Z, Wu Y, Jiang Y, et al. Arbuscular mycorrhizal fungi in two vertical-flow wetlands constructed for heavy metal-contaminated wastewater bioremediation. Environ. Sci. Pollut. Res. 2018;25:12830–12840.
  • Martínez-Gallardo MR, Lopez MJ, Jurado MM, et al. Bioremediation of olive mill wastewater sediments in evaporation ponds through in situ composting assisted by bioaugmentation. Sci Total Environ. 2019;703:135537.
  • Shrivastava JN, Verma S, Kumar V. Bioremediation of Yamuna water by mono and dual bacterial isolates. Indian J Sci Res Technol. 2013;1(1):56–60.
  • Gaikwad GL, Wate SR, Ramteke DS, et al. Development of microbial consortia for the effective treatment of complex wastewater. J Bioremed Biodegrad. 2014;5(4):1.
  • Biswas T, Banerjee S, Saha A, et al. Bacterial consortium based petrochemical waste water treatment: from strain isolation to industrial effluent treatment. Environ Adv. 2022;7. DOI:10.1016/j.envadv.2021.100132
  • Jelic A, Cruz-Morato C, Marco-Urrea E, et al. Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Res. 2012;46:955–964.
  • Rodarte-Moralez AI, Feijoo G, Moreira MT, et al. Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J Microbial Biotechnol. 2011;27:1839–1846.
  • Bodin H, Daneshvar A, Gros M, et al. Effects of biopellets composed of microalgae and fungi on pharmaceuticals present at environmentally relevant levels in water. Ecol Eng J Ecotechnol. 2016;91:169–172.
  • Singh et al., 2016 Singh S, Lo S, Srivastava VC and Hiwarkar AD(2016). Comparative study of electrochemical oxidation for dye degradation : Parametric optimization and mechanism identification. Journal of Environmental Chemical Engineering . 4(3).
  • Meckenstock, R. U., Boll, M., Mouttaki, H., Koelschbach, J. S., Tarouco, P. C., Weyrauch, P., … & Himmelberg, A. M. (2016). Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. Microbial Physiology, 26(1–3), 92–118.
  • Xiong JQ, Kurade MB, Abou-Shanab RAI, et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour Technol. 2016;205:183–190.
  • Singh M, Pant G, Hossain K and Bhatia A(2017). Green remediation:Tool for safe and sustainable environment:a review. Applied Water Sciences; 7(6):2629–2635.
  • Eriksen NT. The technology of microalgal culturing. Biotechnol Lett. 2008;30:1525–1536.
  • Shi W, Wang L, Rousseau DPL, et al. Removal of Estrone, 17α-Ethinylestradiol, and 17βEstradiol in algae and duckweed-based wastewater treatment systems. Environ Sci Pollut Res. 2010;17:824–833.
  • Dzomba P, Kugara J, Mukunyaidze VV, et al. Biodegradation of tetracycline antibacterial using green algal species collected from municipal and hospital effluents. Der Chem Sin. 2015;6:27–33.
  • Kumar M, León V, De SistoMaterano A, et al. Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol. 2008;24(7):1047–1057.
  • Mahmound A, Aziza Y, Abdeltif A, et al. Biosurfactant production by Bacillus strain injected in the petroleum reservoirs. J Ind Microbiol Biotechnol. 2008;35:1303–1306.
  • Muthusamy K, Gopalakrishnan S, Ravi TK, et al. Biosurfactants: properties, commercial production and application. Curr Sci. 2008;94(6):736–747.
  • Tabatabaee A, Assadi MM, Noohi AA, et al. Isolation of biosurfactant producing bacteria from oil reservoirs. Iran J Environ Health Sci Eng. 2005;2(1):6–12.
  • Youssef N, Simpson DR, Duncan KE, et al. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl environ microbiol. 2007;73(4):1239–1247.
  • Daverey A, Pakshirajan K. Production of sophorolipids by the yeast Candida bombicola using simple and low-cost fermentative media. Food Res Int. 2009;42(4):499–504.
  • Banerjee S, Tiwade PB, Sambhav K, et al. Effect of alginate concentration in wastewater nutrient removal using alginate-immobilized microalgae beads: uptake kinetics and adsorption studies. Biochem Eng J. 2019;149:107241.
  • Eichlerová I, Homolka L, Benada O, et al. Decolorization of orange G and remazol brilliant blue R by the white rot fungus Dichomitussqualens: toxicological evaluation and morphological study. Chemosphere. 2007;69(5):795–802. DOI:10.1016/j.chemosphere.2007.04.083
  • Goswami RK, Agrawal K, Mehariya S, et al. Microalgae-based biorefinery for utilization of carbon dioxide for production of valuable bioproducts, in: chemo-biological systems for CO2 utilization. Boca Raton: CRC Press; 2020. pp. 203–228.
  • Hosseinzadeh A, Baziar M, Alidadi H, et al. Application 971 of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost 972 under different conditions. Biores Technol. 2020;303:122926.
  • Ji J, Kakade A, Yu Z, et al. Anaerobic membrane bioreactors for treatment of 991 emerging contaminants: a review. J Environ Manage. 2020;270:110913.
  • Kadri T, Rouissi T, Kaur BS, et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci. 2017;51:52–74.
  • Kang Y, Xu X, Pan H, et al. Decolorization of mordant yellow 1 using Aspergillus sp. TS-A CGMCC 12964 by biosorption and biodegradation. Bioengineered. 2017;9(1):222–232.
  • Kujan P, Prell A, Safár H, et al. Use of the industrial yeast Candida utilis for cadmium sorption. Folia Microbiol (Praha). 2006;51(4):257–260.
  • Lee Li C, Wang S, Du X, et al. Immobilization of iron-and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater. Bioresour Technol. 2016;220:76–84.
  • Li M, Wu Y-J, Yu Z-L, et al. Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquaticaForsk.) with ion implantation. Water Res. 2007;41:3152–3158.
  • Lim SL, Chu WL, andPhang SM. Use of Chlorella vulgaris for bioremediation of textile wastewater. Biores Technol. 2010;101(19):7314–7322.
  • Liu J, Chen F. Biology and industrial applications of chlorella: advances and prospects, microalgae biotechnol. In: Posten C, Chen SF, editors. Microalgae biotechnology. advances in biochemical engineering/biotechnology. Cham: Springer; 2014. pp. 1–35.
  • Malik ZA, Ahmed S. Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium. Afr J Biotechnol. 2012;11:650–658.
  • Meckenstock RU. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol. 2016;26:92–118.
  • Mónica P, Darwin RO, Manjunatha B, et al. Maddela. evaluation of various pesticides-degrading pure bacterial cultures isolated from pesticide-contaminated soils in ecuador. Afr J Biotechnol. 2016;15:2224–2233.
  • Newman LA, Reynolds CM. Phytodegradation of organic compounds. Curr Opin Biotechnol. 2004;15(3):225–230.
  • Poo KM, Son E-B, Chang J-S, et al. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J Environ Manag. 2018;206:364–372.
  • Qiu S, Yu Z, Hu Y, et al. An evolved native microalgal consortium-snow system for the bioremediation of biogas and centrate wastewater: start-up, optimization and stabilization. Water Res. 2021;196:117038.
  • Kumar RK, Agrawal K, Mehariya S, et al. Current perspective on wastewater treatment using photobioreactor for Tetraselmissp.: an emerging and foreseeable sustainable approach. Environ Sci Pollut Res. 2021;67:1–33.
  • Rathoure AK, Dhatwalia VK. Toxicity and waste management using bioremediation. Harshey, PA: IGI Global; 2016. p. 421.
  • Yao S, Lyu S, An Y, et al. Microalgae–bacteria symbiosis in microalgal growth and biofuel production: a review. J Appl Microbiol. 2019;126:359–368.
  • Vassalle, L., García-Galán, M. J., Aquino, S. F., Afonso, R. J. D. C. F., Ferrer, I., Passos, F., & Mota, C. R. (2020). Can high rate algal ponds be used as post-treatment of UASB reactors to remove micropollutants?. Chemosphere, 248, 125969.
  • Zhao X, Chen Z, Wang X, et al. Ppcps removal by aerobic granular sludge membrane bioreactor, Appl. Microbiol Biotechnol. 2014;98:9843–9848.
  • Boduroglu G, Kılıç NK, Onmez GD. Bioremoval of ¨ reactive blue 220 by gonium sp. biomass. Environ Technol. 2014;35(19):2410–2415.
  • Gupta VK, Bhushan R, Nayak A, et al. Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions. Bioremediat J. 2014;18(3):179–191.
  • Santos GC, Corso CR. Comparative analysis of azo dye biodegradation by Aspergillus oryzae and Phanerochaetechrysosporium. Water Air Soil Pollut. 2014;225:2026.
  • Adnan LA, MohdYusof AR, Hadibarata T, et al. Biodegradation of bis-azo dye reactive black 5 by white-rot fungus Trametes gibbosa sp. WRF 3 and its metabolite characterization. Water Air Soil Pollut. 2014;225:2119.
  • Hamadi AA, G¨uven URAZ, Katircioglu H, et al. Adsorption of azo dyes from textile wastewater by Spirulina Platensis. Eurasian J Environ Res. 2017;1(1):19–27.
  • Marzbali MH, Mir AA, Pazoki M, et al. Removal of direct yellow 12 from aqueous solution by adsorption onto spirulina algae as a high-efficiency adsorbent. J Environ Chem Eng. 2017;5(2):1946–1956.
  • Sheekh MM, Abou-El-Souod GW, AsragHa E. Biodegradation of some dyes by green algae Chlorella vulgaris and the cyanobacterium Aphanocapsaelachista (2018). Egypt J Bot. 2018;58(3):311–320.
  • Hussein MH, Abou El-Wafa GS, Shaaban-Dessuki SA, et al. Bioremediation of methyl orange onto Nostoccarneum biomass by adsorption, kinetics and isotherm studies. Global Adv Res J Microbiol. 2018;7(1):6–22.
  • Naji NS, Salman JM. Effect of temperature variation on the efficacy of Chlorella vulgaris in decolorization of Congo red from aqueous solutions. Biochem Cell Arch. 2019;19(2):4169–4174.
  • Lebron YAR, Moreira VR, Santos LVS. Studies on dye biosorption enhancement by chemically modified journal of chemistry 13 Fucus vesiculosus, Spirulina maxima and Chlorella pyrenoidosa algae. J Clean Prod. 2019;240:118197.
  • Tan L, Shao Y, Mu G, et al. Enhanced azo dye biodegradation performance and halotolerance of Candida tropicalis SYF-1 by static magnetic field (SMF). BioresourTechnol. 2020;295:122283.
  • Das, C., Ramaiah, N., Pereira, E. & Naseera, K. Efficient bioremediation of tannery wastewater by monostrains and consortium of marine Chlorella sp. and Phormidium sp. Int. J. Phytoremediation 20, 284–292 (2018).