1,841
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deciphering cell–cell interactions and communication in the tumor microenvironment and unraveling intratumoral genetic heterogeneity via single-cell genomic sequencing

, , , , , , , & ORCID Icon show all
Pages 14974-14986 | Received 13 Jun 2022, Accepted 03 Aug 2022, Published online: 27 Apr 2023

References

  • Oshi M, Satyananda V, Angarita FA, et al. Angiogenesis is associated with an attenuated tumor microenvironment, aggressive biology, and worse survival in gastric cancer patients. Am J Cancer Res. 2021;11(4):1659–1671.
  • Wu D, Zhu Y. Role of kynurenine in promoting the generation of exhausted CD8+ T cells in colorectal cancer. Am J Transl Res. 2021;13(3):1535–1547.
  • Basith S, Manavalan B, Shin TH, et al. mapping the intramolecular communications among different glutamate dehydrogenase states using molecular dynamics. Biomolecules. 2021;11(6):798.
  • Terry S, Engelsen AST, Buart S, et al. Hypoxia-driven intratumor heterogeneity and immune evasion. Cancer Lett. 2020;492:1–10.
  • Zeng C, Wang J, Li M, et al. comprehensive molecular characterization of Chinese patients with glioma by extensive next-generation sequencing panel analysis. 2021;13:3573–3588.
  • Ma X, Guo J, Liu K, et al. Identification of a distinct luminal subgroup diagnosing and stratifying early stage prostate cancer by tissue-based single-cell RNA sequencing. Mol Cancer. 2020;19(1):147. DOI:10.1186/s12943-020-01264-9
  • Liu K, Gao R, Wu H, et al. Single-cell analysis reveals metastatic cell heterogeneity in clear cell renal cell carcinoma. J Cell Mol Med. 2021;25(9):4260–4274. DOI:10.1111/jcmm.16479
  • Bendova P, Pardini B, Susova S, et al. Genetic variations in microRNA-binding sites of solute carrier transporter genes as predictors of clinical outcome in colorectal cancer. Carcinogenesis. 2021;42(3):378–394. DOI:10.1093/carcin/bgaa136
  • Zhang S, Jiang VC, Han G, et al. Longitudinal single-cell profiling reveals molecular heterogeneity and tumor-immune evolution in refractory mantle cell lymphoma. Nat Commun. 2021;12(1):2877. DOI:10.1038/s41467-021-22872-z
  • Sun G, Li Z, Rong D, et al. Single-cell RNA sequencing in cancer: applications, advances, and emerging challenges. Mol Ther Oncolytics. 2021;21:183–206.
  • Datlinger P, Rendeiro AF, Boenke T, et al. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat Methods. 2021;18(6):635–642. DOI:10.1038/s41592-021-01153-z
  • Zhang Y, Wang D, Peng M, et al. Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res. 2021;40(1):81. DOI:10.1186/s13046-021-01874-1
  • Blackburn DM, Lazure F, Corchado AH, et al. High-resolution genome-wide expression analysis of single myofibers using SMART-Seq. J Biol Chem. 2019;294(52):20097–20108. DOI:10.1074/jbc.RA119.011506
  • Hagemann-Jensen M, Ziegenhain C, Chen P, et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat Biotechnol. 2020;38(6):708–714. DOI:10.1038/s41587-020-0497-0
  • Yanai I, Hashimshony T. CEL-Seq2-single-cell RNA sequencing by multiplexed linear amplification. Methods Mol Biol. 2019;1979:45–56.
  • Bageritz J, Raddi G Single-cell RNA sequencing with drop-seq. Methods Mol Biol. 1979, 73–85 (2019).
  • Hsieh C-H, Hsieh H-C, Shih F-H, et al. An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics. 2021;11(14):7072–7091. DOI:10.7150/thno.57803
  • Tikhonova AN, Dolgalev I, Hu H, et al. The bone marrow microenvironment at single-cell resolution. Nature. 2019;569(7755):222–228. DOI:10.1038/s41586-019-1104-8
  • Ludwig LS, Lareau CA, Ulirsch JC, et al. lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019;176(6):1325–1339. DOI:10.1016/j.cell.2019.01.022
  • Jin S, Zong Y, Gao Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science. 2019;364(6437):292–295. DOI:10.1126/science.aaw7166
  • Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics. 2021;21:98–109.
  • Sharma A, Cao EY, Kumar V, et al. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. Nat Commun. 2018;9(1):4931. DOI:10.1038/s41467-018-07261-3
  • Wang X, Chen Y, Dong K, et al. Effects of FER1L4-miR-106a-5p/miR-372-5p-E2F1 regulatory axis on drug resistance in liver cancer chemotherapy. Mol Ther Nucleic Acids. 2021;24:449–461.
  • Kosanke M, Osetek K, Haase A et al. Reprogramming enriches for somatic cell clones with small-scale mutations in cancer-associated genes. Mol Ther. 2021;S1525-0016:00194–00195.
  • Fendler A, Bauer D, Busch J, et al. Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nat Commun. 2020;11(1):929. DOI:10.1038/s41467-020-14700-7
  • Spartalis C, Schmidt EM, Elmasry M, et al. In vivo effects of chemotherapy on oncogenic pathways in colorectal cancer. Cancer Sci. 2019;110(8):2529–2539. DOI:10.1111/cas.14077
  • Lu YC, Zheng Z, Robbins PF, et al. an efficient single-cell RNA-Seq approach to identify neoantigen-specific T cell receptors. Mol Ther. 2018;26(2):379–389. DOI:10.1016/j.ymthe.2017.10.018
  • Zhang X, Li T, Liu F, et al. Comparative analysis of droplet-based ultra-high- throughput single-cell RNA-Seq systems. Mol Cell. 2019;73(1):130–142. DOI:10.1016/j.molcel.2018.10.020
  • Shifru E, Carnevale J, Tobin V, et al. Genome-wide CRISPR screens in primary human t cells reveal key regulators of immune function. Cell. 2018;175(7):1958–1971. DOI:10.1016/j.cell.2018.10.024
  • See P, Lum J, Chen J, et al. A single-cell sequencing guide for immunologists. Front Immunol. 2018;9:2425.
  • Zhang T, Lv J, Tan Z, et al. Immunocyte profiling using single-cell mass cytometry reveals EpCAM+ CD4+ T cells abnormal in colon cancer. Front Immunol. 2019;10:1571.
  • Tang T, Huang X, Zhang G, et al. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther. 2021;6(72). DOI:10.1038/s41392-020-00449-4
  • van Heeckeren AM, Sutton MT, Fletcher DR, et al. Enhancing cystic fibrosis immune regulation. Front Pharmacol. 2021;12:573065.
  • Hou PP, Chen HZ. Extracellular vesicles in the tumor immune microenvironment. Cancer Lett. 2021;516:48–56.
  • Das R, Verma R, Sznol M, et al. Combination therapy with anti–CTLA-4 and anti–PD-1 leads to distinct immunologic changes in vivo. J Immunol. 2015;194:950–959.
  • Goswami S, Walle T, Cornish AE, et al. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat Med. 2020;26(1):39–46. DOI:10.1038/s41591-019-0694-x
  • Bernard V, Semaan A, Huang J, et al. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res. 2019;25(7):2194–2205. DOI:10.1158/1078-0432.CCR-18-1955
  • Yan X, Xie Y, Yang F, et al. Comprehensive description of the current breast cancer microenvironment advancements via single-cell analysis. J Exp Clin Cancer Res. 2021;40(1):142. DOI:10.1186/s13046-021-01949-z
  • Ramachandran P, Matchett KP, Dobie R, et al. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat Rev Gastroenterol Hepatol. 2020;17(8):457–472.
  • Losic B, Craig AJ, Villacorta-Martin C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer. Nat Commun. 2020;11(1):291. DOI:10.1038/s41467-019-14050-z
  • Li C, Guo L, Li S, et al. Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and transcriptional activities of ECs in CC. Mol Ther Nucleic Acids. 2021;24:682–694.
  • Yu TJ, Ma D, Liu YY,et al. Bulk and single-cell transcriptome profiling reveal the metabolic heterogeneity in human breast cancers. Mol Ther. 2021;S1525-0016:00132–00135.
  • Zhou S, Huang Y-E, Liu H, et al. Single-cell RNA-seq dissects the intratumoral heterogeneity of triple-negative breast cancer based on gene regulatory networks. Mol Ther Nucleic Acids. 2021;23:682–690.
  • Augustine R, Kalva SN, Ahmad R, et al. 3D bioprinted cancer models: revolutionizing personalized cancer therapy. Transl Oncol. 2021;14(4):101015. DOI:10.1016/j.tranon.2021.101015
  • Yang P, Meng M, Zhou Q. Oncogenic cancer/testis antigens are a hallmarker of cancer and a sensible target for cancer immunotherapy. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188558.
  • Damaghi M, West J, Robertson-Tessi M, et al. The harsh microenvironment in early breast cancer selects for a Warburg phenotype. Proc Natl Acad Sci, USA. 2021;118(3):e2011342118. DOI:10.1073/pnas.2011342118
  • Bailey C, Black JRM, Reading JL, et al. Tracking cancer evolution through the disease course. Cancer Discov. 2021;11(4):916–932. DOI:10.1158/2159-8290.CD-20-1559
  • Hoon DSB, Rahimzadeh N, Bustos MA. EpiMap: fine-tuning integrative epigenomics maps to understand complex human regulatory genomic circuitry. Signal Transduct Target Ther. 2021;6(1):179.
  • Liu K, Gao R, Wu H, et al. Single-cell analysis reveals metastatic cell heterogeneity in clear cell renal cell carcinoma. J Cell Mol Med. 2021;25(9):4260–4274.
  • Li L, Xiong F, Wang Y, et al. What are the applications of single-cell RNA sequencing in cancer research: a systematic review. J Exp Clin Cancer Res. 2021;40(1):163. DOI:10.1186/s13046-021-01955-1
  • Deng W, Ma Y, Su Z, et al. Single-cell RNA-sequencing analyses identify heterogeneity of CD8+ T cell subpopulations and novel therapy targets in melanoma. Mol Ther Oncolytics. 2020;20:105–118.
  • Mercatelli D, Balboni N, Palma A et al. Single-cell gene network analysis and transcriptional landscape of MYCN- Amplified neuroblastoma cell lines. Biomolecules. 2021;11:177.
  • Park J, Choi W, Tiesmeyer S, et al. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nat Commun. 2021;12(1):3545. DOI:10.1038/s41467-021-23807-4
  • Lan YT, Chang S-C, Lin P-C, et al. Clinicopathological and molecular features between synchronous and metachronous metastases in colorectal cancer. Am J Cancer Res. 2021;11(4):1646–1658.
  • Fulcher BD, Arnatkeviciute A, Fornito A. Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data. Nat Commun. 2021;12(1):2669.
  • Mahdessian D, Cesnik AJ, Gnann C, et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature. 2021;590(7847):649–654. DOI:10.1038/s41586-021-03232-9
  • Alon S, Goodwin DR, Sinha A, et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science. 2021;371(6528):eaax2656. DOI:10.1126/science.aax2656
  • Takei Y, Yun J, Zheng S, et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature. 2021;590(7845):344–350. DOI:10.1038/s41586-020-03126-2