4,600
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Spent substrate from mushroom cultivation: exploitation potential toward various applications and value-added products

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Article: 2252138 | Received 20 Sep 2022, Accepted 14 Aug 2023, Published online: 05 Sep 2023

References

  • Maurice S, Arnault G, Nordén J, et al. Fungal sporocarps house diverse and host-specific communities of fungicolous fungi. Isme J. 2021;15(5):1445–40. doi: 10.1038/s41396-020-00862-1
  • El-Ramady H, Abdalla N, Badgar K, et al. Edible mushrooms for sustainable and healthy human food: nutritional and medicinal attributes. Sustainability. 2022;14(9):4941. doi: 10.3390/su14094941
  • Gargano ML, van Griensven LJLD, Isikhuemhen OS, et al. Medicinal mushrooms: Valuable biological resources of high exploitation potential. Plant Biosyst - An Int J Dealing Aspects Plant Biol. 2017;151(3):548–565. doi: 10.1080/11263504.2017.1301590
  • Carrasco-González JA, Serna-Saldívar SO, Gutiérrez-Uribe JA. Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. J Food Compos Anal. 2017;58:69–81. doi: 10.1016/j.jfca.2017.01.016
  • de Frutos P. Changes in world patterns of wild edible mushrooms use measured through international trade flows. For Policy Econ. 2020;112:102093. doi: 10.1016/j.forpol.2020.102093
  • Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. In: Edible and medicinal mushrooms. John Wiley & Sons, Ltd; 2017. pp. 5–13. doi: 10.1002/9781119149446.ch2
  • Kumla J, Suwannarach N, Sujarit K, et al. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules. 2020;25(12):2811. doi: 10.3390/molecules25122811
  • Kaushal LA, Prashar A. Agricultural crop residue burning and its environmental impacts and potential causes – case of northwest India. J Environ Plan Manag. 2021;64(3):464–484. doi: 10.1080/09640568.2020.1767044
  • Martín C. Pretreatment of crop residues for bioconversion. Agronomy. 2021;11(5):924. doi: 10.3390/agronomy11050924
  • Chen L, Qian L, Zhang X, et al. Research progress on indoor environment of mushroom factory. Int J Agric Biol Eng. 2022;15(1):25–32. doi: 10.25165/j.ijabe.20221501.6872
  • Zisopoulos FK, Ramírez HAB, Goot AJ, et al. A resource efficiency assessment of the industrial mushroom production chain: the influence of data variability. J Clean Prod. 2016;126:394–408. doi: 10.1016/j.jclepro.2016.03.066
  • Atallah E, Zeaiter J, Ahmad MN, et al. Hydrothermal carbonization of spent mushroom compost waste compared against torrefaction and pyrolysis. Fuel Process Technol. 2021;216:106795. doi: 10.1016/j.fuproc.2021.106795
  • Beyer DM Impact of the mushroom industry on the environment [Internet]. Penn State Extension. Pennsylvania State University; 2011 [cited 2022 Jul 18]. Available from: https://extension.psu.edu/impact-of-the-mushroom-industry-on-the-environment
  • Council directive 1999/31/EC on the landfill of waste [Internet]. 1999. Available from: http://ec.europa.eu/environment/waste/landfill_index.htm.
  • Gong F, Zhang D, Zgang Y, et al. The nutritional value and safety assessment analysis on spent mushroom substrate of Pleurotus ostreatus. China Anim Husb Vet Med. 2012;39(11):86.
  • Chen F, Martín C, Finell M, et al. Enabling efficient bioconversion of birch biomass by Lentinula edodes: regulatory roles of nitrogen and bark additions on mushroom production and cellulose saccharification. Biomass Convers Biorefin. 2022;12(4):1217–1227. doi: 10.1007/s13399-020-00794-y
  • Chen F, Xiong S, Sundelin J, et al. Potential for combined production of food and biofuel: Cultivation of Pleurotus pulmonarius on soft- and hardwood sawdusts. J Clean Prod. 2020;266:122011. doi: 10.1016/j.jclepro.2020.122011
  • Wei M, Geladi P, Xiong S. NIR hyperspectral imaging and multivariate image analysis to characterize spent mushroom substrate: a preliminary study. Anal Bioanal Chem. 2017;409(9):2449–2460. doi: 10.1007/s00216-017-0192-2
  • Mohd Hanafi FH, Rezania S, Mat Taib S, et al. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview. J Mater Cycles Waste Manag. 2018;20(3):1383–1396. doi: 10.1007/s10163-018-0739-0
  • Leong YK, Ma TW, Chang JS, et al. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review. Bioresour Technol. 2022;344:126157. doi: 10.1016/j.biortech.2021.126157
  • Koutrotsios G, Kalogeropoulos N, Kaliora AC, et al. Toward an increased functionality in oyster (Pleurotus) mushrooms produced on grape marc or olive mill wastes serving as sources of bioactive compounds. J Agric Food Chem. 2018;66(24):5971–5983. doi: 10.1021/acs.jafc.8b01532
  • Koutrotsios G, Tagkouli D, Bekiaris G, et al. Enhancing the nutritional and functional properties of Pleurotus citrinopileatus mushrooms through the exploitation of winery and olive mill wastes. Food Chem. 2022;370:131022. doi: 10.1016/j.foodchem.2021.131022
  • Zervakis GI, Koutrotsios G. Solid-state fermentation of plant residues and agro-industrial wastes for the production of medicinal mushrooms. In: Agrawal D, Tsay H, Shyur L, Wu Y Wang S, editors. Medicinal plants and fungi: Recent advances in research and development. Singapore: Springer Singapore; 2017. pp. 365–396. doi: 10.1007/978-981-10-5978-0_12
  • Vega A, De León JA, Miranda S, et al. Agro-industrial waste improves the nutritional and antioxidant profile of Pleurotus djamor. Clean Waste Syst. 2022;2:100018. doi: 10.1016/j.clwas.2022.100018
  • Cunha Zied D, Sánchez JE, Noble R, et al. Use of spent mushroom substrate in new mushroom crops to promote the transition towards a circular economy. Agronomy. 2020;10(9):1239. doi: 10.3390/agronomy10091239
  • Economou CN, Philippoussis AN, Diamantopoulou PA. Spent mushroom substrate for a second cultivation cycle of Pleurotus mushrooms and dephenolization of agro-industrial wastewaters. FEMS Microbiol Lett. 2020;367(8). doi: 10.1093/femsle/fnaa060
  • Mamiro DP, Royse DJ, Beelman RB. Yield, size, and mushroom solids content of Agaricus bisporus produced on non-composted substrate and spent mushroom compost. World J Microbiol Biotechnol. 2007;23(9):1289–1296. doi: 10.1007/s11274-007-9364-0
  • Wu CY, Liang CH, Liang ZC. Evaluation of using spent mushroom sawdust wastes for cultivation of Auricularia polytricha. Agronomy. 2020;10(12):1892. doi: 10.3390/agronomy10121892
  • Ahmad Zakil F, Mohd Isa R, Mohd Sueb MS, et al. Growth performance and mineral analysis of Pleurotus ostreatus (oyster mushroom) cultivated on spent mushroom medium mixed with rubber tree sawdust. Mater Today Proc. 2022;57:1329–1337. doi: 10.1016/j.matpr.2022.01.112
  • Lisiecka J, Prasad R, Jasinska A. The utilisation of Pholiota nameko, Hypsizygus marmoreus, and Hericium erinaceus spent mushroom substrates in Pleurotus ostreatus cultivation. Horticulturae. 2021;7(10):396. doi: 10.3390/horticulturae7100396
  • Lin Q, Long L, Wu L, et al. Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris. J Sci Food Agric. 2017;97(10):3476–3480. doi: 10.1002/jsfa.8097
  • Zeng XL, Han F, Ye JL, et al. Recycling spent Pleurotus eryngii substrate supplemented with Tenebrio molitor feces for cultivation of Agrocybe chaxingu. Int J Recycl Org Waste Agricult. 2017;6(4):275–280. doi: 10.1007/s40093-017-0171-9
  • Noonsong V. Recycling of spent Pleurotus compost for production of the Agrocybe cylindracea. Mycosphere. 2016;7(1):36–43. doi: 10.5943/mycosphere/7/1/4
  • Picornell-Buendía R, Pardo-Giménez A, de Juan-Valero JA. Agronomic assessment of spent substrates for mushroom cultivation. Biotechnol Agron Soc Environ. 2016;20(3):263–374. doi: 10.25518/1780-4507.13138
  • Picornell MR, Pardo A, de Juan JA. Reuse of degraded Pleurotus ostreatus substrate through supplementation with wheat bran and Calprozime® quantitative parameters. Agron Colomb. 2015;33(2):261–270. doi: 10.15446/agron.colomb.v33n2.49760
  • Wang S, Xu F, Li Z, et al. The spent mushroom substrates of Hypsizigus marmoreus can be an effective component for growing the oyster mushroom Pleurotus ostreatus. Sci Hortic. 2015;186:217–222. doi: 10.1016/j.scienta.2015.02.028
  • Ashrafi R, Mian MH, Rahman MM, et al. Recycling of spent mushroom substrate for the production of oyster mushroom. Res Biotechnol. 2014;5:37–41.
  • Mishra KK, Pal RS, Arunkumar R, et al. Antioxidant properties of different edible mushroom species and increased bioconversion efficiency of Pleurotus eryngii using locally available casing materials. Food Chem. 2013;138(2–3):1557–1563. doi: 10.1016/j.foodchem.2012.12.001
  • Sun X, Xu H, Liang H, et al. Chemical composition of spent Pleurotus eryngii mushroom substrate and its reuse for Volvariella volvacea production. Asian J Chem. 2013;25(18):10504–10508. doi: 10.14233/ajchem.2013.15809
  • Zhang W, Niu X, Zhang W, et al. The cultivation of Agaricus bisporus on the spent substrate of Flammulina velutipes. African Journal Of Agricultural Research. 2013;8:4860–4863.
  • González Matute R, Figlas D, Curvetto N. Agaricus blazei production on non-composted substrates based on sunflower seed hulls and spent oyster mushroom substrate. World J Microbiol Biotechnol. 2011;27(6):1331–1339. doi: 10.1007/s11274-010-0582-5
  • Pardo-Giménez A, Pardo-González JE, Zied DC. Evaluation of harvested mushrooms and viability of Agaricus bisporus growth using casing materials made from spent mushroom substrate. Int J Food Sci Technol. 2011;46(4):787–792. doi: 10.1111/j.1365-2621.2011.02551.x
  • Gern RMM, Libardi Junior N, Patrício GN, et al. Cultivation of Agaricus blazei on Pleurotus spp. spent substrate. Braz Arch Biol Technol. 2010;53(4):939–944. doi: 10.1590/S1516-89132010000400024
  • Pardo-Giménez A, Pardo-González JE. Elaboration of new substrates for cultivating Pleurotus ostreatus (Jacq.) P. Kumm. based on degraded substrates from edible fungi cultivation. ITEA. 2009;105(2):89–98.
  • Singh C, Oys S. Recycling of spent oyster mushroom substrate to recover additional value. KUSET. 2009;5.
  • Liang ZC, Wu C, Wang J. The evaluation of using mushroom sawdust wastes for cultivation of Pleurotus citrinopileatus. Fungal Sci. 2005;20:27–34.
  • Shashirekha MN, Rajarathnam S, Bano Z. Enhancement of bioconversion efficiency and chemistry of the mushroom, Pleurotus sajor-caju (Berk and br.) Sacc. produced on spent rice straw substrate, supplemented with oil seed cakes. Food Chem. 2002;76(1):27–31. doi: 10.1016/S0308-8146(01)00244-8
  • Chai J, Kim Y, Lee S. Reutilization of enokitake cultural waste as cultivating substrates for production of shiitake, Lentinus edodes and enokitake, Flammulina velutipes. Gwacheon, South Korea: Report of the Ministry of Agriculture & Forestry of the Republic of Korea; 2000. p. 113.
  • Kilpatrick M, Murray DJ, Ward F Influence of substrate formulation and autoclave treatment on Lentinula edodes production. Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi. Maastricht, Netherlands; 2000. p. 803–810.
  • Nakaya M, Yoneyama S, Kato Y, et al. Cultivation of some important edible mushrooms using the sawdust from waste shiitake bed logs. Proceedings of the 3rd International Conference of Mushroom Biology and Mushroom Products. Sydney, Australia: World Society for Mushroom Biology and Mushroom Products; 1999 [cited 2022 May 20]. Available from:https://www.fungifun.org/docs/mushrooms/Shiitake/Mushworld%20Cultivation%20of%20some%20important%20edible%20mushrooms%20using%20the%20sawdust%20from%20waste%20Shiitake%20bed%20logs.pdf
  • Akamatsu Y. Reutilization of culture wastes of Pleurotus ostreatus and Phollota nameko for cultivation of Lyophyllum decastes. J Wood Sci. 1998;44(5):417–420. doi: 10.1007/BF01130458
  • Royse DJ. Recycling of spent shiitake substrate for production of the oyster mushroom, Pleurotus sajor-caju. Appl Microbiol Biotechnol. 1992;38(2):179–182. doi: 10.1007/BF00174464
  • FAO. The future of food and agriculture – Alternative pathways to 2050 | Global Perspectives Studies | Food and Agriculture Organization of the United Nations. 2018.
  • Colgrave ML, Dominik S, Tobin AB, et al. Perspectives on future protein production. J Agric Food Chem. 2021;69(50):15076–15083. doi: 10.1021/acs.jafc.1c05989
  • Boontiam W, Wachirapakorn C, Wattanachai S. Growth performance and hematological changes in growing pigs treated with Cordyceps militaris spent mushroom substrate. Vet World. 2019;13(4):768–773. doi: 10.14202/vetworld.2020.768-773
  • Chuang WY, Hsieh YC, Lee TT. The effects of fungal feed additives in animals: a review. Animals (Basel). 2020;10(5):805. doi: 10.3390/ani10050805
  • Song X, Ren Z, Wang X, et al. Antioxidant, anti-inflammatory and renoprotective effects of acidic-hydrolytic polysaccharides by spent mushroom compost (Lentinula edodes) on LPS-induced kidney injury. Int j biol macromol. 2020;151:1267–1276. doi: 10.1016/j.ijbiomac.2019.10.173
  • Wang Q, Cheng J, Wang L, et al. Valorization of spent shiitake substrate for recovery of antitumor fungal sterols by ultrasound-assisted extraction. J Food Biochem. 2018;42(5):e12602. doi: 10.1111/jfbc.12602
  • Ivarsson E, Grudén M, Södergren J, et al. Use of faba bean (Vicia faba L.) hulls as substrate for Pleurotus ostreatus – potential for combined mushroom and feed production. J Clean Prod. 2021;313:127969. doi: 10.1016/j.jclepro.2021.127969
  • Hsieh YC, Lin WC, Chuang WY, et al. Effects of mushroom waster medium and stalk residues on the growth performance and oxidative status in broilers. Anim Biosci. 2021 ;34(2):265–275. doi: 10.5713/ajas.19.0889
  • Fan GJ, Chen MH, Lee CF, et al. Effects of rice straw fermented with spent Pleurotus sajor-caju mushroom substrates on milking performance in Alpine dairy goats. Anim Biosci. 2022;35(7):999–1009. doi: 10.5713/ab.21.0340
  • Yuan C, Wu M, Tahir SM, et al. Velvet antler production and hematological changes in male Sika deers fed with spent mushroom substrate. Animals (Basel). 2022;12(13):1689. doi: 10.3390/ani12131689
  • Huang LQ, Li SQ, Yuan ZZ, et al. Effects of feeding co-fermented whole plant rice and spent mushroom(Pleurotus ostreatus) substrate on slaughter performance, meat quality and organ size indexes of Liuyang black goats. Acta Prataculturae Sin. 2021;30(6):133.
  • Qi Q, Peng Q, Tang M, et al. Microbiome analysis investigating the impacts of fermented spent mushroom substrates on the composition of microbiota in weaned piglets hindgut. Front Vet Sci. 2020;7:584243. doi: 10.3389/fvets.2020.584243.
  • Liu Y, Mei L, Li J, et al. Effect of JUNCAO-cultivated Ganoderma lucidum spent mushroom substrate-hot water extract on immune function in mice. Trop J Pharm Res. 2018;17(2):261–267. doi: 10.4314/tjpr.v17i2.10
  • Baek YC, Kim MS, Reddy KE, et al. Rumen fermentation and digestibility of spent mushroom (Pleurotus ostreatus) substrate inoculated with Lactobacillus brevis for Hanwoo steers ¤. Revista Colombiana de Ciencias Pecuarias. 2017;30(4):267–277. doi: 10.17533/udea.rccp.v30n4a02
  • Chang S, Lin MJ, Chao YP, et al. Effects of spent mushroom compost meal on growth performance and meat characteristics of grower geese. R Bras Zootec. 2016;45(6):281–287. doi: 10.1590/S1806-92902016000600001
  • Seok JS, Kim YI, Lee YH, et al. Effect of feeding a by-product feed-based silage on nutrients intake, apparent digestibility, and nitrogen balance in sheep. J Anim Sci Technol. 2016;58(1):9. doi: 10.1186/s40781-016-0091-7
  • Aldoori ZT, Al-Obaidi ASA, Abdulkareem AH, et al. Effect of dietary replacement of barley with mushroom cultivation on carcass characteristics of Awassi lambs. J Anim Health Prod. 2015;3(4):94–98. doi: 10.14737/journal.jahp/2015/3.4.94.98
  • Kim YI, Park JM, Lee YH, et al. Effect of by-product feed-based silage feeding on the performance, blood metabolites, and carcass characteristics of Hanwoo steers (a field study). Asian-Australas J Anim Sci. 2015;28(2):180–187. doi: 10.5713/ajas.14.0443
  • Liu Y, Zhao C, Lin D, et al. Effects of Ganoderma lucidum spent mushroom substrate extract on milk and serum immunoglobulin levels and serum antioxidant capacity of dairy cows. Trop J Pharm Res. 2015;14(6):1049–1055. doi: 10.4314/tjpr.v14i6.16
  • Liu Y, Zhao C, Lin D, et al. Effect of water extract from spent mushroom substrate after Ganoderma balabacense cultivation by using JUNCAO technique on production performance and hematology parameters of dairy cows. Anim Sci J. 2015;86(9):855–862. doi: 10.1111/asj.12371
  • Fazaeli H, Shafyee-Varzeneh H, Farahpoor A, et al. Recycling of mushroom compost wheat straw in the diet of feedlot calves with two physical forms. Int J Recycl Org Waste Agricult. 2014;3(3):3. doi: 10.1007/s40093-014-0065-z
  • Foluke A, Olutayo A, Olufemi A. Assessing spent mushroom substrate as a replacement to wheat bran in the diet of broilers. Am Int J Contemp Res. 2014;4(4):178–183.
  • Kim SC, Moon YH, Kim HS, et al. Effect of dietary fermented spent mushroom (Hypsizygus marmoreus) substrates on laying hens. J Mushroom. 2014;12(4):350–356. doi: 10.14480/JM.2014.12.4.350
  • Tasaki Y, Kozuka K, Mochida K, et al. Effect of sawdust-based spent mushroom substrate treated with steam on rat growth performance. Food Sci Technol Res. 2014;20(2):493–497. doi: 10.3136/fstr.20.493
  • Kim YI, Lee YH, Kim KH, et al. Effects of supplementing microbially-fermented spent mushroom substrates on growth performance and carcass characteristics of Hanwoo steers (a field study). Asian-Australas J Anim Sci. 2012;25(11):1575–1581. doi: 10.5713/ajas.2012.12251
  • Kim MK, Lee HG, Park JA, et al. Recycling of fermented sawdust-based oyster mushroom spent substrate as a feed supplement for postweaning calves. Asian-Australas J Anim Sci. 2011;24(4):493–499. doi: 10.5713/ajas.2011.10333
  • Cho YJ, Choi EJ, Shin PG, et al. Effect of spent mushroom (Pleurotus eryngii) substrates addition on egg quality in laying hens. J Mushrooms. 2010;8(4):196–197.
  • Azevedo RS, Ávila CDS, Dias ES, et al. Utilization of the spent substrate of Pleurotus sajor caju mushroom in broiler chicks ration and the effect on broiler chicken performance. Acta Sci - Anim Sci. 2009;31(2):139–144.
  • Machado AMB, Dias ES, dos Santos ÉC, et al. Composto exaurido do cogumelo Agaricus blazei na dieta de frangos de corte. R Bras Zootec. 2007;36(4 suppl):1113–1118. doi: 10.1590/S1516-35982007000500018
  • Song YM, Lee SD, Chowdappa R, et al. Effects of fermented oyster mushroom (Pleurotus ostreats) by-product supplementation on growth performance, blood parameters and meat quality in finishing Berkshire pigs. Animal. 2007;1(2):301–307. doi: 10.1017/S1751731107683785
  • Fazaeli H, Masoodi ART. Spent wheat straw compost of Agaricus bisporus mushroom as ruminant feed. Asian-Australas J Anim Sci. 2006;19(6):845–851. doi: 10.5713/ajas.2006.845
  • Beattie VE, Sneddon IA, Walker N, et al. Environmental enrichment of intensive pig housing using spent mushroom compost. Anim Sci. 2001;72(1):35–42. doi: 10.1017/S1357729800055533
  • Ahmed ST, Hoon JH, Mun HS, et al. Evaluation of Lactobacillus and Bacillus-based probiotics as alternatives to antibiotics in enteric microbial challenged weaned piglets. Afr J Microbiol Res. 2014;8(1):96–104. doi: 10.5897/AJMR2013.6355
  • Barba-Vidal E, Martín-Orúe SM, Castillejos L. Practical aspects of the use of probiotics in pig production: A review. Lives Sci. 2019;223:84–96. doi: 10.1016/j.livsci.2019.02.017
  • Kwak AM, Lee IK, Lee SY, et al. Oxalic acid from Lentinula edodes culture filtrate: antimicrobial activity on phytopathogenic bacteria and qualitative and quantitative analyses. Mycobiology. 2016;44(4):338–342. doi: 10.5941/MYCO.2016.44.4.338
  • Arriola KG, Queiroz OCM, Romero JJ, et al. Effect of microbial inoculants on the quality and aerobic stability of bermudagrass round-bale haylage. J Dairy Sci. 2015;98(1):478–485. doi: 10.3168/jds.2014-8411
  • Zakaria Z, Rasib NAA, Tompang MF. Spent mushroom substrate based fish feed affects the growth of catfish (Clarias gariepinus). IOP Conf Ser Earth Environ Sci. 2021;765(1):012082. doi: 10.1088/1755-1315/765/1/012082
  • Van Doan H, Hoseinifar SH, Dawood MAO, et al. Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2017;70:87–94. doi: 10.1016/j.fsi.2017.09.002
  • Lee PT, Wu YS, Tseng CC, et al. Dietary Agaricus blazei spent substrate improves disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae in vivo. J Mar Sci Eng. 2022;10(1):100. doi: 10.3390/jmse10010100
  • Chirapongsatonkul N, Mueangkan N, Wattitum S, et al. Comparative evaluation of the immune responses and disease resistance of Nile tilapia (Oreochromis niloticus) induced by yeast β-glucan and crude glucan derived from mycelium in the spent mushroom substrate of Schizophyllum commune. Aquacult Rep. 2019;15:100205. doi: 10.1016/j.aqrep.2019.100205
  • Abro Z, Kassie M, Tanga C, et al. Socio-economic and environmental implications of replacing conventional poultry feed with insect-based feed in Kenya. J Clean Prod. 2020;265:121871. doi: 10.1016/j.jclepro.2020.121871
  • Hawkey KJ, Lopez-Viso C, Brameld JM, et al. Insects: a potential source of protein and other nutrients for feed and food. Ann Rev Anim Biosci. 2021;9(1):333–354. doi: 10.1146/annurev-animal-021419-083930
  • Roffeis M, Wakefield ME, Almeida J, et al. Life cycle cost assessment of insect based feed production in West Africa. J Clean Prod. 2018;199:792–806. doi: 10.1016/j.jclepro.2018.07.179
  • Li TH, Zhang CR, Che PF, et al. Recycling of spent mushroom substrate and food waste: utilisation as feed materials for black soldier fly (Hermetia illucens (L.) Diptera: Stratiomyidae). J Ins Food Feed. 2021;7(4):409–417. doi: 10.3920/JIFF2020.0105
  • Li TH, Che PF, Zhang CR, et al. Recycling of spent mushroom substrate: Utilization as feed material for the larvae of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). PLoS One. 2020 Aug 6;15(8):e0237259. doi: 10.1371/journal.pone.0237259
  • Wei P, Li Y, Lai D, et al. Protaetia brevitarsis larvae can feed on and convert spent mushroom substrate from Auricularia auricula and Lentinula edodes cultivation. Waste Manag. 2020;114:234–239. doi: 10.1016/j.wasman.2020.07.009
  • FAO. World fertilizer trends and outlook to 2020. Rome; 2017.
  • Sharma A, Shukla A, Attri K, et al. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicol Environ Saf. 2020;201:110812. doi: 10.1016/j.ecoenv.2020.110812
  • YongShan C, Camps-Arbestain M, QinHua S, et al. The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutr Cycl Agroecosyst. 2018;111(2–3):103–125. doi: 10.1007/s10705-017-9903-5
  • Celestina C, Hunt JR, Sale PWG, et al. Attribution of crop yield responses to application of organic amendments: A critical review. Soil Till Res. 2019;186:135–145. doi: 10.1016/j.still.2018.10.002
  • Urra J, Alkorta I, Garbisu C. Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy. 2019;9(9):542. doi: 10.3390/agronomy9090542
  • Ribas LCC, de Mendonça MM, Camelini CM, et al. Use of spent mushroom substrates from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: Growth promotion and soil bioremediation. Bioresour Technol. 2009;100(20):4750–4757.
  • Paredes C, Medina E, Bustamante MA, et al. Effects of spent mushroom substrates and inorganic fertilizer on the characteristics of a calcareous clayey-loam soil and lettuce production. Soil Use And Manag. 2016;32(4):487–494. doi: 10.1111/sum.12304
  • Upadhyay SK, Chauhan PK. Optimization of eco-friendly amendments as sustainable asset for salt-tolerant plant growth-promoting bacteria mediated maize (Zea mays L.) plant growth, Na uptake reduction and saline soil restoration. Environ Res. 2022;211:113081. doi: 10.1016/j.envres.2022.113081
  • Herrero-Hernández E, Andrades MS, Villalba Eguren G, et al. Organic amendment for the recovery of vineyard soils: effects of a single application on soil properties over two years. Processes. 2022;10(2):317. doi: 10.3390/pr10020317
  • Hernández D, Ros M, Carmona F, et al. Composting spent mushroom substrate from Agaricus bisporus and Pleurotus ostreatus production as a growing media component for baby leaf lettuce cultivation under Pythium irregulare biotic stress. Horticulturae. 2021;7(2):13. doi: 10.3390/horticulturae7020013
  • Lipiec J, Usowicz B, Kłopotek J, et al. Effects of application of recycled chicken manure and spent mushroom substrate on organic matter, acidity, and hydraulic properties of sandy soils. Materials. 2021;14(14):4036. doi: 10.3390/ma14144036
  • Ngan NM, Riddech N. Use of spent mushroom substrate as an inoculant carrier and an organic fertilizer and their impacts on Roselle growth (Hibiscus sabdariffa L.) and soil quality. Waste Biomass Valor. 2021;12(7):3801–3811. doi: 10.1007/s12649-020-01278-w
  • Wang HW, Xu M, Cai XY, et al. Evaluation of soil microbial communities and enzyme activities in cucumber continuous cropping soil treated with spent mushroom (Flammulina velutipes) substrate. J Soils Sediments. 2021;21(8):2938–2951. doi: 10.1007/s11368-021-02989-w
  • Paula FS, Tatti E, Thorn C, et al. Soil prokaryotic community resilience, fungal colonisation and increased cross-domain co-occurrence in response to a plant-growth enhancing organic amendment. Soil Biol Biochem. 2020;149:107937. doi: 10.1016/j.soilbio.2020.107937
  • Meng X, Liu B, Zhang H, et al. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment. Bioresour Technol. 2019;276:281–287. doi: 10.1016/j.biortech.2018.12.097
  • Ultra VU, Sotto JO, Punzalan MR. Nutrient supplying potential of different spent mushroom substrate preparations as soil amendment in a potting media. IOP Conf Ser Earth Environ Sci. 2018;120:012010. doi: 10.1088/1755-1315/120/1/012010
  • Paula FS, Tatti E, Abram F, et al. Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment. J Environ Manage. 2017;196:476–486. doi: 10.1016/j.jenvman.2017.03.038
  • Gobbi V, Bonato S, Nicoletto C, et al. Spent mushroom substrate as organic fertilizer: vegetable organic trials | International society for horticultural science. Proceedings of the III International Symposium on Organic Matter Management and Compost Use in Horticulture. Murcia, Spain; 2015. p. 49–56.
  • Nakatsuka H, Oda M, Hayashi Y, et al. Effects of fresh spent mushroom substrate of Pleurotus ostreatus on soil micromorphology in Brazil. Geoderma. 2016;269:54–60. doi: 10.1016/j.geoderma.2016.01.023
  • Sendi H, Mohamed MTM, Anwar MP, et al. Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. alboglabra) production. Sci World J. 2013;2013:1–8. doi: 10.1155/2013/258562
  • Medina E, Paredes C, Bustamante MA, et al. Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma. 2012;173–174:152–161. doi: 10.1016/j.geoderma.2011.12.011
  • Peregrina F, Larrieta C, Colina M, et al. Spent mushroom substrates influence soil quality and nitrogen availability in a semiarid vineyard soil. Soil Sci Soc Am J. 2012;76(5):1655–1666. doi: 10.2136/sssaj2012.0018
  • Wuest PJ, Fahy HK, Fahy J. Use of spent mushroom substrate (SMS) for corn (maize) production and its effect on surface water quality. Compost Sci Util. 1995;3(1):46–54. doi: 10.1080/1065657X.1995.10701768
  • Meng L, Li W, Zhang S, et al. Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw. Bioresour Technol. 2017;226:39–45. doi: 10.1016/j.biortech.2016.11.054
  • Meng L, Zhang S, Gong H, et al. Improving sewage sludge composting by addition of spent mushroom substrate and sucrose. Bioresour Technol. 2018;253:197–203. doi: 10.1016/j.biortech.2018.01.015
  • Meng X, Liu B, Xi C, et al. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. Bioresour Technol. 2018;251:22–30. doi: 10.1016/j.biortech.2017.09.077
  • Kong Y, Ma R, Li G, et al. Impact of biochar, calcium magnesium phosphate fertilizer and spent mushroom substrate on humification and heavy metal passivation during composting. Sci Total Environ. 2022;824:153755. doi: 10.1016/j.scitotenv.2022.153755
  • Liu Y, Ma R, Li D, et al. Effects of calcium magnesium phosphate fertilizer, biochar and spent mushroom substrate on compost maturity and gaseous emissions during pig manure composting. Journal Of Environmental Management query. 2020;267:110649–. doi: 10.1016/j.jenvman.2020.110649
  • Yu X, Li X, Ren C, et al. Co-composting with cow dung and subsequent vermicomposting improve compost quality of spent mushroom. Bioresour Technol. 2022;358:127386. doi: 10.1016/j.biortech.2022.127386
  • Sun C, Wei Y, Kou J, et al. Improve spent mushroom substrate decomposition, bacterial community and mature compost quality by adding cellulase during composting. J Clean Prod. 2021;299:126928. doi: 10.1016/j.jclepro.2021.126928
  • Domínguez-Gutiérrez M, Gaitán-Hernández R, Moctezuma-Pérez I, et al. Composting and vermicomposting of spent mushroom substrate to produce organic fertilizer. Emir J Food Agric. 2022;34(3):220–228. doi: 10.9755/ejfa.2022.v34.i3.2828
  • Stack JP, Kenerley CM, Pettit RE. Application of biological control agents. In: Biocontrol of plant diseases. CRC Press; 2020. pp. 43–54.
  • Wright MG, Bennett GM. Evolution of biological control agents following introduction to new environments. BioControl. 2018;63(1):105–116. doi: 10.1007/s10526-017-9830-z
  • Shen HS, Shao S, Chen JC, et al. Antimicrobials from mushrooms for assuring food safety. Compr Rev Food Sci Food Saf. 2017;16(2):316–329. doi: 10.1111/1541-4337.12255
  • Katas H, Akhmar MAM, Abdalla SSI. Biosynthesized silver nanoparticles loaded in gelatine hydrogel for a natural antibacterial and anti-biofilm wound dressing. J Bioact Compat Polym. 2021;36(2):111–123. doi: 10.1177/0883911520988303
  • Velazhahan R, Al-Mamari SNH, Al-Sadi AM, et al. In vitro antagonistic potential, plant growth-promoting activity and indole-3-acetic acid producing trait of bacterial isolates from spent mushroom substrate of Agaricus bisporus. Jour Agri Mar Scie. 2020;25(2):22–29. doi: 10.24200/jams.vol25iss2pp22-29
  • Li H, Yoshida S, Mitani N, et al. Disease resistance and growth promotion activities of chitin/cellulose nanofiber from spent mushroom substrate to plant. Carbohydr Polym. 2022;284:119233. doi: 10.1016/j.carbpol.2022.119233
  • Fujita R, Yokono M, Ube N, et al. Suppression of Alternaria brassicicola infection by volatile compounds from spent mushroom substrates. J Biosci Bioeng. 2021;132(1):25–32. doi: 10.1016/j.jbiosc.2021.03.003
  • Singh G, Tiwari A, Gupta A, et al. Bioformulation development via valorizing silica-rich spent mushroom substrate with Trichoderma asperellum for plant nutrient and disease management. J Environ Manage. 2021;297:113278. doi: 10.1016/j.jenvman.2021.113278
  • Yu YY, Li SM, Qiu JP, et al. Combination of agricultural waste compost and biofertilizer improves yield and enhances the sustainability of a pepper field. J Plant Nutr Soil Sci. 2019;182(4):560–569. doi: 10.1002/jpln.201800223
  • Aguiar T, Luiz C, Neto A, et al. Residual polysaccharides from fungi reduce the bacterial spot in tomato plants. Bragantia. 2018;77(2):299–313. doi: 10.1590/1678-4499.2016514
  • Biswas MK, Ghosh T. Screening of brinjal genotypes for their resistance against fungal and bacterial wilt and integrated management of the disease. Plant Cell Biotechnol Mol Biol. 2018;19:61–71.
  • Ishihara A, Goto N, Kikkawa M, et al. Identification of antifungal compounds in the spent mushroom substrate of Lentinula edodes. J Pestic Sci. 2018;43(2):108–113.
  • Kang DS, Min KJ, Kwak AM, et al. Defense response and suppression of phytophthora blight disease of pepper by water extract from spent mushroom substrate of Lentinula edodes. Plant Pathol J. 2017;33(3):264–275. doi: 10.5423/PPJ.OA.02.2017.0030
  • Chen JT, Lin MJ, Huang JW. Efficacy of spent blewit mushroom compost and Bacillus aryabhattai combination on control of Pythium damping-off in cucumber. J Agric Sci. 2015;153(7):1257–1266. doi: 10.1017/S0021859614000987
  • Kwak AM, Min KJ, Lee SY, et al. Water extract from spent mushroom substrate of Hericium erinaceus suppresses bacterial wilt disease of tomato. Mycobiology. 2015;43(3):311–318. doi: 10.5941/MYCO.2015.43.3.311
  • Nicol RW, Burlakoti P. Effect of aerobic compost tea inputs and application methods on protecting tomato from Phytophthora capsici. Acta Hortic. 2015;1069(1069):229–233. doi: 10.17660/ActaHortic.2015.1069.32
  • Marín F, Santos M, Diánez F, et al. Characters of compost teas from different sources and their suppressive effect on fungal phytopathogens. World J Microbiol Biotechnol. 2013;29(8):1371–1382. doi: 10.1007/s11274-013-1300-x
  • Parada RY, Murakami S, Shimomura N, et al. Suppression of fungal and bacterial diseases of cucumber plants by using the spent mushroom substrate of Lyophyllum decastes and Pleurotus eryngii. J Phytopathol. 2012;160(7–8):390–396. doi: 10.1111/j.1439-0434.2012.01916.x
  • Mansour F, El-Sayed G. Soil amendment and seed treatments with compost tea as alternative fungicide for controlling root rot disease of bean plants - proquest. Egypt J Biol Pest Control. 2011;21(1):19–26.
  • Parada RY, Murakami S, Shimomura N, et al. Autoclaved spent substrate of hatakeshimeji mushroom (Lyophyllum decastes Sing.) and its water extract protect cucumber from anthracnose. Crop Prot. 2011;30(4):443–450. doi: 10.1016/j.cropro.2010.11.021
  • Ntougias S, Papadopoulou KK, Zervakis GI, et al. Suppression of soil-borne pathogens of tomato by composts derived from agro-industrial wastes abundant in mediterranean regions. Biol Fertil Soils. 2008;44(8):1081–1090. doi: 10.1007/s00374-008-0295-1
  • Kaur H, Nyochembeng LM, Mentreddy SR, et al. Assessment of the antimicrobial activity of Lentinula edodes against Xanthomonas campestris pv. Vesicatoria. Crop Prot. 2016;89:284–288. doi: 10.1016/j.cropro.2016.08.001
  • Elsakhawy T, ALKahtani MDF, Sharshar AAH, et al. Efficacy of mushroom metabolites (Pleurotus ostreatus) as a natural product for the suppression of broomrape growth (Orobanche crenata Forsk) in faba bean plants. Plants. 2020;9(10):1265. doi: 10.3390/plants9101265
  • Elsakhawy T, Abd El-Rahem W. Evaluation of spent mushroom substrate extract as a biofertilizer for growth improvement of rice (Oryza sativa L.). Egypt J Soil Sci. 2020;60(1):31–42.
  • Gibbs J, Gaskin E, Ji C, et al. The effect of plant-based dietary patterns on blood pressure: a systematic review and meta-analysis of controlled intervention trials. J Hypertens. 2021;39(1):23–37. doi: 10.1097/HJH.0000000000002604
  • Yu E, Malik VS, Hu FB. Cardiovascular disease prevention by diet modification: JACC health promotion series. J Am Coll Cardiol. 2018;72(8):914–926. doi: 10.1016/j.jacc.2018.02.085
  • Thakur M, Bhattacharya S, Khosla PK, et al. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants. 2019;12:1–12. doi: 10.1016/j.jarmap.2018.11.004
  • Vahid Afagh H, Saadatmand S, Riahi H, et al. Influence of spent mushroom compost (SMC) as an organic fertilizer on nutrient, growth, yield, and essential oil composition of German chamomile (Matricaria recutita L.). Commun Soil Sci Plant Anal. 2019;50(5):538–548. doi: 10.1080/00103624.2019.1568450
  • Vahid Afagh H, Saadatmand S, Riahi H, et al. Effects of Leached Spent Mushroom Compost (LSMC) on the yield, essential oil composition and antioxidant compounds of German chamomile (Matricaria recutita L.). J Essent Oil Bear Plants. 2018;21(6):1436–1449. doi: 10.1080/0972060X.2019.1580617
  • Esmaielpour B, Rahmanian M, Heidarpour O, et al. Effect of vermicompost and spent mushroom compost on the nutrient and essential oil composition of Basil (Ocimum basilicum L.). J Essent Oil Bear Plants. 2017;20(5):1283–1292. doi: 10.1080/0972060X.2017.1396931
  • Roy S, Barman S, Chakraborty UCB. Evaluation of spent mushroom substrate as biofertilizer for growth improvement of Capsicum annuum L. J App Biol Biotech. 2015;3(3):022–7.
  • Singh UB, Malviya D, Khan W, et al. Earthworm grazed-Trichoderma harzianum biofortified spent mushroom substrates modulate accumulation of natural antioxidants and bio-fortification of mineral nutrients in tomato. Front Plant Sci. 2018;9:1017. doi: 10.3389/fpls.2018.01017
  • Medina E, Paredes C, Pérez-Murcia MD, et al. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour Technol. 2009;100(18):4227–4232. doi: 10.1016/j.biortech.2009.03.055
  • Ariff INM, Bahrin EK, Ramli N, et al. Direct use of spent mushroom substrate from Pleurotus pulmonarius as a readily delignified feedstock for cellulase production. Waste Biomass Valori. 2019;10(4):839–850. doi: 10.1007/s12649-017-0106-8
  • Schallemberger JB, Libardi N, Dalari BLSK, et al. Textile azo dyes discolouration using spent mushroom substrate: enzymatic degradation and adsorption mechanisms. Environmental Technology. 2021;44(9):1265–1286. doi: 10.1080/09593330.2021.2000038
  • Lau KL, Tsang YY, Chiu SW. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere. 2003;52(9):1539–1546. doi: 10.1016/S0045-6535(03)00493-4
  • Ball AS, Jackson AM. The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Bioresour Technol. 1995;54(3):311–314. doi: 10.1016/0960-8524(95)00153-0
  • Trejo-Hernandez MR, Lopez-Munguia A, Ramirez RQ. Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds. Process Biochem. 2001;36(7):635–639. doi: 10.1016/S0032-9592(00)00257-0
  • Mayolo-Deloisa K, Del Refugio Trejo-Hernandez M, Rito-Palomares M. Recovery of laccase from the residual compost of Agaricus bisporus in aqueous two-phase systems. Process Biochemistry query. 2009;44(4):435–439. doi: 10.1016/j.procbio.2008.12.010
  • Devi R, Kapoor S, Thakur R, et al. Lignocellulolytic enzymes and bioethanol production from spent biomass of edible mushrooms using Saccharomyces cerevisiae and Pachysolen tannophilus. Biomass Convers Biorefin. 2022;1–15. doi: 10.1007/s13399-022-02406-3
  • Singh AD, Abdullah N, Vikineswary S. Optimization of extraction of bulk enzymes from spent mushroom compost. J Chem Technol Biotechnol. 2003;78(7):743–752. doi: 10.1002/jctb.852
  • Ko HG, Park SH, Kim SH, et al. Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiol. 2005;50(2):103. doi: 10.1007/BF02931456
  • Lim SH, Lee YH, Kang HW. Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology. 2013;41(4):214–220. doi: 10.5941/MYCO.2013.41.4.214
  • Lim SH, Kim JK, Lee YH. Production of lignocellulolytic enzymes from spent mushroom compost of Pleurotus eryngii. Korean J Mycol. 2012;40(3):152–158. doi: 10.4489/KJM.2012.40.3.152
  • Sadiq S, Hassan MM, Saba S, et al. Bioremediation of endosulfan in soil using ligninolytic extract of spent mushroom compost of Pleurotus ostreatus. Appl Ecol Environ Res. 2019;17(2):3251–3267. doi: 10.15666/aeer/1702_32513267
  • Rajavat AS, Rai S, Pandiyan K, et al. Sustainable use of the spent mushroom substrate of Pleurotus florida for production of lignocellulolytic enzymes. J Of Basic Microbiol. 2020;60(2):173–184. doi: 10.1002/jobm.201900382
  • Yunan NAM, Shin TY, Ibrahim S, et al. Upcycling the spent mushroom substrate of the grey oyster mushroom Pleurotus pulmonarius as a source of lignocellulolytic enzymes for palm oil mill effluent hydrolysis. J Microbiol Biotechnol. 2021;31(6):823–832. doi: 10.4014/jmb.2103.03020
  • Lin H, Sun M, Li J, et al. Purification and characterization of xylanase from spent mushroom compost and its application in saccharification of biomass wastes. BioResources. 2017;13(1):220–230. doi: 10.15376/biores.13.1.220-230
  • Schimpf U, Schulz R. Industrial by-products from white-rot fungi production. Part I: Generation of enzyme preparations and chemical, protein biochemical and molecular biological characterization. Process Biochem. 2016;51(12):2034–2046. doi: 10.1016/j.procbio.2016.08.032
  • Nakajima VM, Soares FEF, Queiroz JH. Screening and decolorizing potential of enzymes from spent mushroom composts of six different mushrooms. Biocatal Agric Biotechnol. 2018;13:58–61. doi: 10.1016/j.bcab.2017.11.011
  • Liao CS, Yuan SY, Hung BH, et al. Removal of organic toxic chemicals using the spent mushroom compost of Ganoderma lucidum. J Environ Monit. 2012;14(7):1983–1988. doi: 10.1039/c2em10910g
  • Phan CW, Sabaratnam V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl Microbiol Biotechnol. 2012;96(4):863–873. doi: 10.1007/s00253-012-4446-9
  • Branà MT, Sergio L, Haidukowski M, et al. Degradation of aflatoxin B1 by a sustainable enzymatic extract from spent mushroom substrate of Pleurotus eryngii. Toxins (Basel). 2020;12(1):49. doi: 10.3390/toxins12010049
  • Passos DF, Pereira N, Castro AM. A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr Opin Green Sustain Chem. 2018;14:60–66. doi: 10.1016/j.cogsc.2018.06.003
  • Feng Y, Liu HQ, Xu F, et al. Enzymatic degradation of steam-pretreated Lespedeza stalk (Lespedeza crytobotrya) by cellulosic-substrate induced cellulases. Bioproc Biosyst Eng. 2011;34:357–365. doi: 10.1007/s00449-010-0478-7
  • Martín C, Dixit P, Momayez F, et al. Hydrothermal pretreatment of lignocellulosic feedstocks to facilitate biochemical conversion. Front Bioeng Biotechnol. 2022;10:10. doi: 10.3389/fbioe.2022.846592
  • Jönsson LJ, Martín C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–112. doi: 10.1016/j.biortech.2015.10.009
  • Chen F, Xiong S, Gandla ML, et al. Spent mushroom substrates for ethanol production – effect of chemical and structural factors on enzymatic saccharification and ethanolic fermentation of Lentinula edodes-pretreated hardwood. Bioresour Technol. 2022;347:126381. doi: 10.1016/j.biortech.2021.126381
  • He J, Qiu Y, Ji X, et al. A novel strategy for producing cellulase from Trichoderma reesei with ultrasound‐assisted fermentation using spent mushroom substrate. Process Biochem. 2021;104:110–116. doi: 10.1016/j.procbio.2021.03.015
  • Grujić M, Dojnov B, Potočnik I, et al. Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation. Int Biodeter Biodegr. 2015;104:290–298. doi: 10.1016/j.ibiod.2015.04.029
  • Camassola M, Dillon AJP. Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crops Prod. 2009;29(2):642–647. doi: 10.1016/j.indcrop.2008.09.008
  • Economou CN, Diamantopoulou PA, Philippoussis AN. Valorization of spent oyster mushroom substrate and laccase recovery through successive solid state cultivation of Pleurotus, Ganoderma, and Lentinula strains. Appl Microbiol Biotechnol. 2017;101(12):5213–5222. doi: 10.1007/s00253-017-8251-3
  • Kumar K, Mehra R, Guiné RPF, et al. Edible mushrooms: a comprehensive review on bioactive compounds with health benefits and processing aspects. Foods. 2021;10(12):2996. doi: 10.3390/foods10122996
  • Zhang Y, Liu W, Huang W, et al. Characterization and antiproliferative effect of novel acid polysaccharides from the spent substrate of shiitake culinary-medicinal mushroom Lentinus edodes (Agaricomycetes) cultivation. Int J Medic Mushrooms. 2017;19(5):395–403. doi: 10.1615/IntJMedMushrooms.v19.i5.20
  • Liu Y, Zhen D, Wang D, et al. Immunomodulatory activities of polysaccharides from white button mushroom, Agaricus bisporus (Agaricomycetes), fruiting bodies and cultured mycelia in healthy and immunosuppressed mice. Int J Medic Mushrooms. 2019;21(1):13–27. doi: 10.1615/IntJMedMushrooms.2018029648
  • Zhu H, Sheng K, Yan E, et al. Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int j biol macromol. 2012;50(3):840–843. doi: 10.1016/j.ijbiomac.2011.11.016
  • Ren Z, Liu W, Song X, et al. Antioxidant and anti-inflammation of enzymatic-hydrolysis residue polysaccharides by Lentinula edodes. Int j biol macromol. 2018;120:811–822. doi: 10.1016/j.ijbiomac.2018.08.114
  • Zhang J, Meng G, Zhai G, et al. Extraction, characterization and antioxidant activity of polysaccharides of spent mushroom compost of Ganoderma lucidum. Int j biol macromol. 2016;82:432–439. doi: 10.1016/j.ijbiomac.2015.10.016
  • Dávila-Giraldo LR, Zambrano-Forero C, Torres-Arango O, et al. Integral use of rice husks for bioconversion with white-rot fungi. Biomass Convers Biorefin. 2022;12(8):2981–2991. doi: 10.1007/s13399-020-00940-6
  • He P, Li F, Huang L, et al. Chemical characterization and antioxidant activity of polysaccharide extract from spent mushroom substrate of Pleurotus eryngii. J Taiwan Inst Chem Eng. 2016;69:48–53. doi: 10.1016/j.jtice.2016.10.017
  • Zeng Y, Zhang Y, Zhang L, et al. Structural characterization and antioxidant and immunomodulation activities of polysaccharides from the spent rice substrate of Cordyceps militaris. Food Sci Biotechnol. 2015;24(5):1591–1596. doi: 10.1007/s10068-015-0205-x
  • Zhang Y, Zeng Y, Zhang LJ, et al. Monosaccharide composition and antioxidant activity of polysaccharides from different spent mushroom substrates. Food Sci. 2015;36(5):18–23.
  • Zou G, Li B, Wang Y, et al. Efficient conversion of spent mushroom substrate into a high value-added anticancer drug pentostatin with engineered Cordyceps militaris. Green Chem. 2021;23(24):10030–10038. doi: 10.1039/D1GC03594K
  • Umaña M, Eim V, Garau C, et al. Ultrasound-assisted extraction of ergosterol and antioxidant components from mushroom by-products and the attainment of a β-glucan rich residue. Food Chem. 2020;332:127390. doi: 10.1016/j.foodchem.2020.127390
  • Vis M, Mantau U, Allen B, Eds. Study on the optimised cascading use of wood Figure 3. https://data.europa.eu/doi/10.2873/827106
  • Keegan D, Kretschmer B, Elbersen B, et al. Cascading use: a systematic approach to biomass beyond the energy sector. Biofuels Bioprod Biorefin. 2013;7(2):193–206. doi: 10.1002/bbb.1351
  • Chen F, Martín C, Lestander TA, et al. Shiitake cultivation as biological preprocessing of lignocellulosic feedstocks – substrate changes in crystallinity, syringyl/guaiacyl lignin and degradation-derived by-products. Bioresour Technol. 2022;344:126256. doi: 10.1016/j.biortech.2021.126256
  • Xiong S, Martín C, Eilertsen L, et al. Energy-efficient substrate pasteurisation for combined production of shiitake mushroom (Lentinula edodes) and bioethanol. Bioresour Technol. 2019;274:65–72. doi: 10.1016/j.biortech.2018.11.071
  • Chen F Combined production of edible mushrooms and biofuels from lignocellulosic residues [Internet] [ Doctoral thesis]. 2021 [cited 2022 Aug 22]. Available from: https://pub.epsilon.slu.se/26324/1/chen_f_211216.pdf
  • Chen F, Grimm A, Eilertsen L, et al. Integrated production of edible mushroom (Auricularia auricula-judae), fermentable sugar and solid biofuel. Renewable Energy. 2021;170:172–180. doi: 10.1016/j.renene.2021.01.124
  • Lin Y, Ge X, Liu Z, et al. Integration of shiitake cultivation and solid-state anaerobic digestion for utilization of woody biomass. Bioresour Technol. 2015;182:128–135. doi: 10.1016/j.biortech.2015.01.102
  • Schimpf U, Schulz R. Industrial by-products from white-rot fungi production. Part II: Application in anaerobic digestion for enzymatic treatment of hay and straw. Process Biochem. 2019;76:142–154. doi: 10.1016/j.procbio.2018.10.006
  • Khan MU, Ahring BK. Lignin degradation under anaerobic digestion: Influence of lignin modifications -A review. Biomass Bioenerg. 2019;128:105325. doi: 10.1016/j.biombioe.2019.105325
  • Huang W, Wachemo AC, Yuan H, et al. Full utilization of nutrients in rice straw by integrating mushroom cultivation, biogas production, and fertilizer use. Int J Agric Biol Eng. 2019;12(4):174–183. doi: 10.25165/j.ijabe.20191204.4658
  • Ikeda S, Yamauchi M, Watari T, et al. Development of enokitake (Flammulina velutipes) mushroom cultivation technology using spent mushroom substrate anaerobic digestion residue. Environ Technol Innov. 2021;24:102046. doi: 10.1016/j.eti.2021.102046
  • Elisashvili V, Penninckx M, Kachlishvili E, et al. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol. 2008;99(3):457–462. doi: 10.1016/j.biortech.2007.01.011
  • Li W, Khalid H, Zhu Z, et al. Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl Energy. 2018;226:1219–1228. doi: 10.1016/j.apenergy.2018.05.055
  • van Kuijk SJA, Sonnenberg ASM, Baars JJP, et al. Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability. Anim Feed Sci Technol. 2015;209:40–50. doi: 10.1016/j.anifeedsci.2015.07.026
  • Ferreira JM, Braga FR, Soares FEF. Nematicidal activity of the Lentinula edodes’ spent mushroom compost. S Afr J Bot. 2022;146:101–102. doi: 10.1016/j.sajb.2021.10.008
  • Yagüe-Carrasco MR, Lobo MC. Reutilización del sustrato post-cultivo de hongos en semillero de hortícolas. ITEA. 2021;117:347–359. doi: 10.12706/itea.2021.004
  • Yu H, Liu P, Shan W, et al. Remediation potential of spent mushroom substrate on Cd pollution in a paddy soil. Environ Sci Pollut Res. 2021;28(27):36850–36860. doi: 10.1007/s11356-021-13266-1
  • Chen WS, Tsai WT, Lin YQ, et al. Production of highly porous biochar materials from spent mushroom composts. Horticulturae. 2022;8(1):46. doi: 10.3390/horticulturae8010046