1,103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced growth and metabolite production from a novel strain of Porphyridium sp

, ORCID Icon, , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Article: 2294160 | Received 17 Oct 2023, Accepted 08 Dec 2023, Published online: 22 Dec 2023

References

  • Ruiz J, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH, Eppink MHM, Kleinegris DMM, Wijffels RH, Barbosa MJ. Towards industrial products from microalgae. Energy & Environmental Science 2016; 9:3036–23.
  • D’Alessandro EB, Antoniosi Filho NR. Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews 2016; 58:832–41.
  • Elleuch F, Ben Hlima H, Barkallah M, Baril P, Abdelkafi S, Pichon C, Fendri I Carotenoids overproduction in Dunaliella sp.: Transcriptional changes and new insights through lycopene cyclase regulation. Applied Sciences – Switzerland 2019; 9(24): 5389.
  • Tounsi L, Hentati F, Ben Hlima H, Barkallah M, Smaoui S, Fendri I, Philippe M, Abdelkafi S. Microalgae as feedstock for bioactive polysaccharides. International Journal of Biological Macromolecules 2022; 221:1238–1250.
  • Gargouch N, Elleuch F, Karkouch I, Tabbene O, Pichon C, Gardarin C, Rihouey C, Picton L, Abdelkafi S, Fendri I, et al. Potential of Exopolysaccharide from Porphyridium marinum to Contend with Bacterial Proliferation, Biofilm Formation, and Breast Cancer. Marine Drugs 2021; 19:66.
  • Raposo MF de J, de Morais AMMB, de Morais RMSC. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sciences 2014; 101:56–63.
  • Tannin-Spitz T, Bergman M, van-Moppes D, Grossman S, Arad S (Malis). Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. Journal of Applied Phycology 2005; 17:215–22.
  • Trinquet E, Maurin F, Préaudat M, Mathis G. Allophycocyanin 1 as a Near-Infrared Fluorescent Tracer: Isolation, Characterization, Chemical Modification, and Use in a Homogeneous Fluorescence Resonance Energy Transfer System. Analytical Biochemistry 2001; 296:232–44.
  • Waggoner A. Fluorescent labels for proteomics and genomics. Current Opinion in Chemical Biology 2006; 10:62–6.
  • Tounsi L, Ben Hlima H, Hentati F, Hentati O, Derbel H, Michaud P, Abdelkafi S. Microalgae: A Promising Source of Bioactive Phycobiliproteins. Marine Drugs 2023; 21:440.
  • Lauceri R, Chini Zittelli G, Torzillo G. A simple method for rapid purification of 662 phycobiliproteins from Arthrospira platensis and Porphyridium cruentum biomass. Algal Research 2019; 44:101685.
  • Rebolloso Fuentes MM, Acién Fernández GG, Sánchez Pérez JA, Guil Guerrero JL. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chemistry 2000; 70:345–53.
  • Assunção MFG, Varejão JMTB, Santos LMA. Nutritional characterization of the microalga Ruttnera lamellosa compared to Porphyridium purpureum. Algal Research 2017; 26:8–14.
  • Guihéneuf F, Stengel DB. Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Research 2015; 10:152–63.
  • Li T, Xu J, Wu H, Jiang P, Chen Z, Xiang W. Growth and Biochemical Composition of Porphyridium purpureum SCS-02 under Different Nitrogen Concentrations. Marine Drugs 2019; 17:124.
  • Drira M, Elleuch J, Ben Hlima H, Hentati F, Gardarin C, Rihouey C, Le Cerf D, Michaud P, Abdelkafi S, Fendri I. Optimization of Exopolysaccharides Production by Porphyridium sordidum and Their Potential to Induce Defense Responses in Arabidopsis thaliana against Fusarium oxysporum. Biomolecules 2021; 11:282.
  • Medina-Cabrera EV, Rühmann B, Schmid J, Sieber V. Characterization 678 and comparison of Porphyridium sordidum and Porphyridium purpureum concerning growth characteristics and polysaccharide production. Algal Research 2020; 49:101931.
  • Kavitha MD, Kathiresan S, Bhattacharya S, Sarada R. Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid .Journal of Food Science and Technology 2016; 53:2270–8.
  • Safi C, Charton M, Pignolet O, Pontalier P-Y, Vaca-Garcia C. Evaluation of the protein quality of Porphyridium cruentum. Journal of Applied Phycology 2013; 25:497–501.
  • Lutzu GA, Zhang L, Zhang Z, Liu T. Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum. Bioprocess and Biosystems Engineering 2017; 40:73–83.
  • Tounsi L, Ben Hlima H, Fendri I, Abdelkafi S, Michaud P. Photoautotrophic growth and accumulation of macromolecules by Porphyridium cruentum UTEX 161 depending on culture media. Biomass Conversion and Biorefinery 2023; 1–18
  • Netanel Liberman G, Ochbaum G, Mejubovsky-Mikhelis M, Bitton R, (Malis) Arad S. Physico chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum. International Journal of Biological Macromolecules 2020; 145:1171–9.
  • Ramus J. The production of extracellular polysaccharide by the unicellular red alga Porphyridium aerugineum. Journal of Phycology 1972; 8:97–111.
  • Gong X, Chen F. Optimization of culture medium for growth of Haematococcus pluvialis. J Appl Phycol. 1997;9(5):437–444. doi: 10.1023/A:1007944922264
  • Ben Amor F, Elleuch F, Ben Hlima H, et al. Proteomic analysis of the Chlorophyta Dunaliella new strain AL-1 revealed global changes of metabolism during high carotenoid production. Mar Drugs. 2017;15(9):293. doi: 10.3390/md15090293
  • Chakraborty B, Gayen K, Bhowmick TK. Transition from synthetic to alternative media for microalgae cultivation: a critical review. Sci Total Environ. 2023;897:165412. doi: 10.1016/j.scitotenv.2023.165412
  • Daneshvar E, Ok YS, Tavakoli S, et al. Insights into upstream processing of microalgae: a review. Biores Technol. 2021;329:124870. doi: 10.1016/j.biortech.2021.124870
  • Zhu L, Wang Z, Shu Q, et al. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013;47(13):4294–4302. doi: 10.1016/j.watres.2013.05.004
  • Oyebamiji OO, Boeing WJ, Holguin FO, et al. Green microalgae cultured in textile wastewater for biomass generation and biodetoxification of heavy metals and chromogenic substances. Bioresour Technol Rep. 2019;7:100247. doi: 10.1016/j.biteb.2019.100247
  • Mohd Udaiyappan AF, Abu Hasan H, Takriff MS, et al. A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Water Proc Eng. 2017;20:8–21. doi: 10.1016/j.jwpe.2017.09.006
  • Menegat S, Ledo A, Tirado R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci Rep. 2022;12(1):14490. doi: 10.1038/s41598-022-18773-w
  • Chai R, Ye X, Ma C, et al. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance Manag. 2019;14(1):20. doi: 10.1186/s13021-019-0133-9
  • Derbel H, Elleuch J, Tounsi L, et al. Improvement of biomass and phycoerythrin production by a strain of Rhodomonas sp. Isolated from the Tunisian coast of Sidi Mansour. Biomolecules. 2022;12(7):885. doi: 10.3390/biom12070885
  • Ben Hlima H, Dammak M, Karkouch N, et al. Optimal cultivation towards enhanced biomass and floridean starch production by Porphyridium marinum. Int j biol macromol. 2019;129:152–161. doi: 10.1016/j.ijbiomac.2019.01.207
  • Tamura K, Stecher G, Kumar S, et al. MEGA11: Molecular evolutionary genetics analysis Version 11. Mol Biol Evol. 2021;38(7):3022–3027. doi: 10.1093/molbev/msab120
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454
  • Abdelkafi S, Labat M, Casalot L, et al. Isolation and characterization of Halomonas sp. strain IMPC, a p-coumaric acid-metabolizing bacterium that decarboxylates other cinnamic acids under hypersaline conditions. FEMS Microbiol Lett. 2006;255:108–114. doi: 10.1111/j.1574-6968.2005.00061.x
  • Guillard RRL. Culture of phytoplankton for feeding marine invertebrates. In: Smith W Chanley M, editors Culture of Marine invertebrate animals. Boston, MA: Springer US; 1975. pp. 29–60.
  • Guillard RRL, Ryther JH. Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonula confervacea (cleve) gran. Can J Microbiol. 1962;8(2):229–239. doi: 10.1139/m62-029
  • Stein-Taylor JR. Culture methods and growth measurements. Handbook of phycological methods. Cambridge University Press; 1973.
  • Griffiths MJ, Garcin C, van Hille RP, et al. Interference by pigment in the estimation of microalgal biomass concentration by optical density. J Microbiol Methods. 2011;85:119–123. doi: 10.1016/j.mimet.2011.02.005
  • Cawse PA. The determination of nitrate in soil solutions by ultraviolet spectrophotometry. Analyst. 1967;92(1094):311. doi: 10.1039/an9679200311
  • Ames BN. Assay of inorganic phosphate, total phosphate and phosphatases. In: Methods in Enzymology. Vol. 8. Elsevier; 1966. p. 115–118. doi: 10.1016/0076-6879(66)08014-5.
  • Pradhan S, Pokhrel MR. Spectrophotometric determination of phosphate in sugarcane juice, fertilizer, detergent and water samples by molybdenum blue method. Sci World [Internet]. 2013;11(11):58–62. doi: 10.3126/sw.v11i11.9139
  • Michel D, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356. doi: 10.1021/ac60111a017
  • Coward T, Fuentes-Grünewald C, Silkina A, et al. Utilising light-emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum. Biores Technol. 2016;221:607–615. doi: 10.1016/j.biortech.2016.09.093
  • Marcati A, Ursu AV, Laroche C, et al. Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. Algal Res. 2014;5:258–263. doi: 10.1016/j.algal.2014.03.006
  • Peña-Medina RL, Fimbres-Olivarría D, Enríquez-Ocaña LF, et al. Erythroprotective potential of phycobiliproteins extracted from Porphyridium cruentum. Metabolites. 2023;13(3):366. doi: 10.3390/metabo13030366
  • Gălan A-M, Vlaicu A, Vintilă ACN, et al. Microalgae strain Porphyridium purpureum for nutrient reduction in dairy wastewaters. Sustainability. 2022;14(14):8545. doi: 10.3390/su14148545
  • Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Methods in Enzymology. Elsevier; 1987. p. 350–382. doi: 10.1016/0076-6879(87)48036-1
  • OliverH L, NiraJ R, Farr AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–275. doi: 10.1016/S0021-9258(19)52451-6
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(1):911–917. doi: 10.1139/y59-099
  • Abdelkafi S, Fouquet B, Barouh N, et al. In vitro comparisons between Carica papaya and pancreatic lipases during test meal lipolysis: potential use of CPL in enzyme replacement therapy. Food Chem. 2009;115(2):488–494. doi: 10.1016/j.foodchem.2008.12.043
  • Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res. 1964;5(4):600–608. doi: 10.1016/S0022-2275(20)40190-7
  • Hotos G, Avramidou D, Mastropetros SG, et al. Isolation, identification, and chemical composition analysis of nine microalgal and cyanobacterial species isolated in lagoons of Western Greece. Algal Res. 2023;69:102935. doi: 10.1016/j.algal.2022.102935
  • Neofotis P, Huang A, Sury K, et al. Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Res. 2016;15:164–178. doi: 10.1016/j.algal.2016.01.007
  • Terashima M, Freeman ES, Jinkerson RE, et al. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid chlamydomonas mutants. Plant J. 2015;81(1):147–159. doi: 10.1111/tpj.12682
  • Li Z, Ma X, Li A, et al. A novel potential source of β-carotene: eustigmatos cf. polyphem (eustigmatophyceae) and pilot β-carotene production in bubble column and flat panel photobioreactors. Biores Technol. 2012;117:257–263. doi: 10.1016/j.biortech.2012.04.069
  • Banerjee A, Sharma R, Chisti Y, et al. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol. 2002;22(3):245–279. doi: 10.1080/07388550290789513
  • Dayananda C, Sarada R, Bhattacharya S, et al. Effect of media and culture conditions on growth and hydrocarbon production by botryococcus braunii. Process Biochem. 2005;40(9):3125–3131. doi: 10.1016/j.procbio.2005.03.006
  • Lupi FM, Fernandes HML, Tomé MM, et al. Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58. Enzyme Microb Technol. 1994;16(7):546–550. doi: 10.1016/0141-0229(94)90116-3
  • Yang S, Wang J, Cong W, et al. Utilization of nitrite as a nitrogen source by Botryococcus Braunii. Biotechnol Lett. 2004;26(3):239–243. doi: 10.1023/B:BILE.0000013722.45527.18
  • Ashokkumar V, Rengasamy R. Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Biores Technol. 2012;104:394–399. doi: 10.1016/j.biortech.2011.10.093
  • Arad S, Friedman O, Rotem A. Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appl environ microbiol. 1988;54(10):2411–2414. doi: 10.1128/aem.54.10.2411-2414.1988
  • Martel CM. Nitrogen-deficient microalgae are rich in cell-surface mannose: potential implications for prey biorecognition by phagotrophic protozoa. Braz J Microbiol. 2009;40(1):86–89. doi: 10.1590/S1517-83822009000100014
  • Ji L, Li S, Chen C, et al. Physiological and transcriptome analysis elucidates the metabolic mechanism of versatile Porphyridium purpureum under nitrogen deprivation for exopolysaccharides accumulation. Bioresources Bioprocess. 2021;8(1):73. doi: 10.1186/s40643-021-00426-x
  • Razaghi A, Godhe A, Albers E. Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Open Life Sciences. 2014;9(2):156–162. doi: 10.2478/s11535-013-0248-
  • Borjas Esqueda A, Gardarin C, Laroche C. Exploring the diversity of red microalgae for exopolysaccharide production. Mar Drugs. 2022;20(4):246. doi: 10.3390/md20040246
  • Fleck-Schneider P, Lehr F, Posten C. Modelling of growth and product formation of Porphyridium purpureum. J Biotechnol. 2007;132(2):134–141. doi: 10.1016/j.jbiotec.2007.05.030
  • Mostert ES, Grobbelaar JU. The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures. Biomass. 1987;13(4):219–233. doi: 10.1016/0144-4565(87)90061-8
  • Nicolaus B, Panico A, Lama L, et al. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry. 1999;52(4):639–647. doi: 10.1016/S0031-9422(99)00202-2
  • De Philippis R, Margheri MC, Pelosi E, et al. Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. J Appl Phycol. 1993;5(4):387–394. doi: 10.1007/BF02182731
  • Steinberg CEW, Hartmann HM. Planktonic bloom-forming cyanobacteria and the eutrophication of lakes and rivers. Freshwater Biol. 1988;20(2):279–287. doi: 10.1111/j.1365-2427.1988.tb00452.x
  • Kroen WK, Rayburn WR. Influence of growth status and nutrients on extracellular polysaccharide synthesis by the soil alga Chlamydomonas Mexicana (chlorophyceae)1. J Phycol. 1984;20(2):253–257. doi: 10.1111/j.0022-3646.1984.00253.x
  • Díaz Bayona KC, Garcés LA. Effect of different media on exopolysaccharide and biomass production by the green microalga botryococcus braunii. J Appl Phycol. 2014;26(5):2087–2095. doi: 10.1007/s10811-014-0242-5
  • Gaignard C, Macao V, Gardarin C, et al. The red microalga Flintiella sanguinaria as a new exopolysaccharide producer. J Appl Phycol. 2018;30(5):2803–2814. doi: 10.1007/s10811-018-1389-2
  • Gaignard C, Laroche C, Pierre G, et al. Screening of marine microalgae: investigation of new exopolysaccharide producers. Algal Res. 2019;44:101711. doi: 10.1016/j.algal.2019.101711
  • Soanen N, Da Silva E, Gardarin C, et al. Improvement of exopolysaccharide production by Porphyridium marinum. Biores Technol. 2016;213:231–238. doi: 10.1016/j.biortech.2016.02.075
  • Villay A, Laroche C, Roriz D, et al. Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Biores Technol. 2013;146:732–735. doi: 10.1016/j.biortech.2013.07.030
  • Redfield AC. The biological control of chemical factors in the environment. Am Scientist. 1958;46:230A–221.
  • You T, Barnett SM. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem Eng J. 2004 12;19(3):251–258. doi: 10.1016/j.bej.2004.02.004
  • Liqin S, Wang C, Lei S Effects of light regime on extracellular polysaccharide production by Porphyridium cruentum cultured in flat plate photobioreactors. In: 2nd International Conference on Bioinformatics and Biomedical Engineering. 2008. page 1488–1491.
  • Sheath RG, Hellebust JA, Sawa T. Floridean starch metabolism of Porphyridium purpureum (Rhodophyta): I. Changes during ageing of batch culture. Phycologia. 1979;18(2):149–163. doi: 10.2216/i0031-8884-18-2-149.1
  • Ramus J, Robins DM. THE CORRELATION OF GOLGI ACTIVITY AND POLYSACCHARIDE SECRETION IN Porphyridium 1 2. J Phycol. 1975;11(1):70–74. doi: 10.1111/j.1529-8817.1975.tb02750.x
  • Viola R, Nyvall P, Pedersén M. The unique features of starch metabolism in red algae. Proc R Soc Lond B. 2001;268(1474):1417–1422. doi: 10.1098/rspb.2001.1644
  • Eriksen NT, Riisgård FK, Gunther WS, et al. On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor. J Appl Phycol. 2007;19(2):161–174. doi: 10.1007/s10811-006-9122-y
  • Brányiková I, Maršálková B, Doucha J, et al. Microalgae—novel highly efficient starch producers. Biotechnol Bioeng. 2011;108(4):766–776. doi: 10.1002/bit.23016
  • Maeda I, Seto Y, Ueda S, et al. Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi-continuous Chlamydomonas cultures. Biotechnol Bioeng. 2006;94(4):722–729. doi: 10.1002/bit.20884
  • Dammak M, Hadrich B, Miladi R, et al. Effects of nutritional conditions on growth and biochemical composition of tetraselmis sp. Lipids Health Dis. 2017;16(1):41. doi: 10.1186/s12944-016-0378-1
  • Ball SG, Morell MK. From bacterial glycogen to starch: understanding the biogenesis of the Plant starch granule. Annu Rev Plant Biol. 2003;54(1):207–233. doi: 10.1146/annurev.arplant.54.031902.134927
  • Ball SGRegulation of starch biosynthesisThe molecular biology of chloroplasts and mitochondria in ChlamydomonasIn: Rochaix J-D, Goldschmidt-Clermont M Merchant SeditorsSpringer NetherlandsDordrecht1998,pp. 549–567.
  • Yao C-H, Ai J-N, Cao X-P, et al. Characterization of cell growth and starch production in the marine green microalga tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions. Appl Microbiol Biotechnol. 2013;97(13):6099–6110. doi: 10.1007/s00253-013-4983-x
  • Kursar TA, Alberte RS. Photosynthetic Unit Organization in a red alga: relationships between light-harvesting pigments and reaction centers. Plant Physiol. 1983;72(2):409–414. doi: 10.1104/pp.72.2.409
  • Yokoya NS, Necchi O, Martins AP, et al. Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta). J Appl Phycol. 2007;19(3):197–205. doi: 10.1007/s10811-006-9124-9
  • Manirafasha E, Ndikubwimana T, Zeng X, et al. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J. 2016;109:282–296. doi: 10.1016/j.bej.2016.01.025
  • Chaloub RM, Motta NMS, de Araujo SP, et al. Combined effects of irradiance, temperature and nitrate concentration on phycoerythrin content in the microalga Rhodomonas sp (cryptophyceae). Algal Research. 2015;8:89–94. doi: 10.1016/j.algal.2015.01.008
  • Zhao L-S, Su H-N, Li K, et al. Supramolecular architecture of photosynthetic membrane in red algae in response to nitrogen starvation. Biochim Biophys Acta Bioenerg. 2016;1857(11):1751–1758. doi: 10.1016/j.bbabio.2016.08.005
  • Levy I, Gantt E. DEVELOPMENT of PHOTOSYNTHETIC ACTIVITY in Porphyridium purpureum (RHODOPHYTA) FOLLOWING NITROGEN STARVATION 1, 2. J Phycol. 1990;26(1):62–68. doi: 10.1111/j.0022-3646.1990.00062.x
  • Dupre C, Guary J-C, Grizeau D. Effect of photon fluence rate, nitrogen limitation and nitrogen recovery on the level of phycoerythrin in the unicellular alga, rhodosorus marinus (rhodophyceae). Physiologia Plantarum. 1994;92(3):521–527. doi: 10.1111/j.1399-3054.1994.tb08846.x
  • Gargouch N, Karkouch I, Elleuch J, et al. Enhanced B-phycoerythrin production by the red microalga Porphyridium marinum: a powerful agent in industrial applications. Int j biol macromol. 2018;120:2106–2114. doi: 10.1016/j.ijbiomac.2018.09.037
  • Kathiresan S, Sarada R, Bhattacharya S, et al. Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Biotechnol Bioeng. 2007;96(3):456–463. doi: 10.1002/bit.21138
  • Lin Q, Gu N, Lin J. Effect of ferric ion on nitrogen consumption, biomass and oil accumulation of a Scenedesmus rubescens-like microalga. Biores Technol. 2012;112:242–247. doi: 10.1016/j.biortech.2012.02.097
  • Tyihák E, Móricz ÁM. BioArena system for studying key molecules as well as ingredients in biological samples. In: Forced-Flow Layer Chromatography. Elsevier; 2016. pp. 397–485.
  • Candan N, Tarhan L. Changes in chlorophyll-carotenoid contents, antioxidant enzyme activities and lipid peroxidation levels in Zn-stressed Mentha pulegium. Turk J Chem. 2003;27(1):21–30.
  • Netto AT, Campostrini E, de OJ, et al. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci Hortic. 2005;104(2):199–209. doi: 10.1016/j.scienta.2004.08.013
  • Zhu S, Huang W, Xu J, et al. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Biores Technol. 2014;152:292–298. doi: 10.1016/j.biortech.2013.10.092
  • Siaut M, Cuiné S, Cagnon C, et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011;11(1):7. doi: 10.1186/1472-6750-11-7
  • Msanne J, Xu D, Konda AR, et al. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry. 2012;75:50–59. doi: 10.1016/j.phytochem.2011.12.007
  • Ördög V, Stirk WA, Bálint P, et al. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol. 2012;24(4):907–914. doi: 10.1007/s10811-011-9711-2
  • Lv J-M, Cheng L-H, Xu X-H, et al. Enhanced lipid production of chlorella vulgaris by adjustment of cultivation conditions. Biores Technol. 2010;101(17):6797–6804. doi: 10.1016/j.biortech.2010.03.120
  • Zachleder V, Brányiková I. Starch overproduction by Means of algae. In: Bajpai R, Prokop A Zappi M, editors Algal biorefineries. Dordrecht: Springer Netherlands; 2014. pp. 217–240.
  • Mujtaba G, Choi W, Lee C-G, et al. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Biores Technol. 2012;123:279–283. doi: 10.1016/j.biortech.2012.07.057
  • Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102(1):100–112. doi: 10.1002/bit.22033
  • Illman AM, Scragg AH, Shales SW. Increase in chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol. 2000;27(8):631–635. doi: 10.1016/S0141-0229(00)00266-0
  • Li J, Han D, Wang D, et al. Choreography of transcriptomes and lipidomes of nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell. 2014;26(4):1645–1665. doi: 10.1105/tpc.113.121418
  • Liu J, Sun Z, Mao X, et al. Multiomics analysis reveals a distinct mechanism of oleaginousness in the emerging model alga chromochloris zofingiensis. Plant J. 2019;98(6):1060–1077. doi: 10.1111/tpj.14302
  • Jaeger D, Winkler A, Mussgnug JH, et al. Time-resolved transcriptome analysis and lipid pathway reconstruction of the oleaginous green microalga monoraphidium neglectum reveal a model for triacylglycerol and lipid hyperaccumulation. Biotechnol Biofuels. 2017;10(1):197. doi: 10.1186/s13068-017-0882-1
  • Becker EW. Microalgae: biotechnology and microbiology. Eberhard-Karls-Universität Tübingen, Germany: Cambridge University Press; 1994. p. 293.
  • Asgharpour M, Rodgers B, Hestekin JA. Eicosapentaenoic acid from Porphyridium Cruentum: increasing growth and productivity of microalgae for pharmaceutical products. Energies. 2015;8(9):10487–10503. doi: 10.3390/en80910487
  • Sato N, Moriyama T, Mori N, et al. Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol. 2017;33(4):74. doi: 10.1007/s11274-017-2236-3
  • Chang J, Le K, Song X, et al. Scale-up cultivation enhanced arachidonic acid accumulation by red microalgae Porphyridium purpureum. Bioprocess Biosyst Eng. 2017;40(12):1763–1773. doi: 10.1007/s00449-017-1831-x
  • Bhattacharya D, Price DC, Chan CX, et al. Genome of the red alga Porphyridium purpureum. Nat Commun. 2013;4(1):1941. doi: 10.1038/ncomms2931
  • Joshi S, Kumari R, Upasani VN. Applications of algae in cosmetics: an overview. Int J Innov Res Sci Eng Technol. 2018;7:1269–1278. doi: 10.15680/IJIRSET.2018.0702038
  • Shanab SMM, Hafez RM, Fouad AS. A review on algae and plants as potential source of arachidonic acid. J Adv Res. 2018;11:3–13. doi: 10.1016/j.jare.2018.03.004
  • Liu H, Fang HHP. Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol. 2002;95(3):249–256. doi: 10.1016/S0168-1656(02)00025-1
  • Ye Y, Clech PL, Chen V, et al. Evolution of fouling during crossflow filtration of model EPS solutions. J Membr Sci. 2005;264(1–2):190–199. doi: 10.1016/j.memsci.2005.04.040