1,062
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exopolysaccharide from marine microalgae belonging to the Glossomastix genus: fragile gel behavior and suspension stability

, , , , , , , , , , , & ORCID Icon show all
Article: 2296257 | Received 16 Oct 2023, Accepted 13 Dec 2023, Published online: 28 Dec 2023

References

  • Pignolet O, Jubeau S, Vaca-Garcia C, et al. Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol. 2013;40(8):781–17. doi: 10.1007/s10295-013-1281-7
  • Matos J, Cardoso C, Bandarra NM, et al. Microalgae as healthy ingredients for functional food: a review. Food Funct. 2017;8(8):2672–2685. doi: 10.1039/C7FO00409E
  • Devadas VV, Khoo KS, Chia WY, et al. Algae biopolymer towards sustainable circular economy. Bioresour Technol. 2021;325:124702. doi: 10.1016/j.biortech.2021.124702
  • Ahmad A, Ashraf SS. Sustainable food and feed sources from microalgae: food security and the circular bioeconomy. Algal Res. 2023;74:103185. doi: 10.1016/j.algal.2023.103185
  • Tounsi L, Hentati F, Ben Hlima H, et al. Microalgae as feedstock for bioactive polysaccharides. Int J Biol Macromol. 2022;221:1238–1250. doi: 10.1016/j.ijbiomac.2022.08.206
  • Delattre C, Pierre G, Laroche C, et al. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv. 2016;34(7):1159–1179. doi: 10.1016/j.biotechadv.2016.08.001
  • Franco-Morgado M, Amador-Espejo GG, Pérez-Cortés M, et al. Microalgae and cyanobacteria polysaccharides: important link for nutrient recycling and revalorization of agro-industrial wastewater. Appl Food Res. 2023;3(1):100296. doi: 10.1016/j.afres.2023.100296
  • Laroche C. Exopolysaccharides from microalgae and cyanobacteria: diversity of strains, production strategies, and applications. Mar Drugs. 2022;20(5):336–379. doi: 10.3390/md20050336
  • Abedfar A, Hosseininezhad M, Rafe A. Effect of microbial exopolysaccharide on wheat bran sourdough: rheological, thermal and microstructural characteristics. Int J Biol Macromol. 2020;154:371–379. doi: 10.1016/j.ijbiomac.2020.03.149
  • Moreira JB, Vaz B, Cardias BB, et al. Microalgae polysaccharides: an alternative source for food production and sustainable agriculture. Polysaccharides. 2022;3(2):441–457. doi: 10.3390/polysaccharides3020027
  • Costa JAV, Lucas BF, Alvarenga AGP, et al. Microalgae polysaccharides: an overview of production, characterization, and potential applications. Polysaccharides. 2021;2(4):759–772. doi: 10.3390/polysaccharides2040046
  • Koçer AT, İnan B, Usul SK, et al. Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment. Braz J Microbiol. 2021;52(4):1779–1790. doi: 10.1007/s42770-021-00575-3
  • Soanen N, Da Silva E, Gardarin C, et al. Improvement of exopolysaccharide production by Porphyridium marinum. Bioresour Technol. 2016;213:231–238. doi: 10.1016/j.biortech.2016.02.075
  • Bernaerts TMM, Kyomugasho C, Van Looveren N, et al. Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum. Carbohydr Polym. 2018;195:542–550. doi: 10.1016/j.carbpol.2018.05.001
  • Ivanova JG, Kabaivanova LV, Petkov GD. Temperature and irradiance effects on Rhodella reticulata growth and biochemical characteristics. Russian J Plant Phys. 2015;62(5):647–652. doi: 10.1134/S102144371504010X
  • Villay A, Laroche C, Roriz D, et al. Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresour Technol. 2013;146:732–735. doi: 10.1016/j.biortech.2013.07.030
  • Li JM, Nie SP. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocoll. 2016;53:46–61. doi: 10.1016/j.foodhyd.2015.01.035
  • Duceac IA, Stanciu MC, Nechifor M, et al. Insights on some polysaccharide gel type materials and their structural peculiarities. Gels. 2022;8(12):771. doi: 10.3390/gels8120771
  • Zaim S, Cherkaoui O, Rchid H, et al. Rheological investigations of water-soluble polysaccharides extracted from Moroccan seaweed cystoseira myriophylloides algae. Polym From Renew Resour. 2020;11(3–4):49–63. doi: 10.1177/2041247920960956
  • Nath P, Mangal R, Kohle F, et al. Dynamics of nanoparticles in entangled polymer solutions. Langmuir. 2018;34(1):241–249. doi: 10.1021/acs.langmuir.7b03418
  • Michon C, Chapuis C, Langendorff V, et al. Strain-hardening properties of physical weak gels of biopolymers food Hydrocoll. 2004;18(6):999–1005. doi: 10.1016/j.foodhyd.2004.04.005
  • Gaignard C, Laroche C, Pierre G, et al. Screening of marine microalgae: investigation of new exopolysaccharide producers. Algal Res. 2019;44:101711. doi: 10.1016/j.algal.2019.101711
  • Toucheteau C, Deffains V, Gaignard C, et al. Role of some structural features in EPS from microalgae stimulating collagen production by human dermal fibroblasts. Bioengineered. 2023;14(1):225402. doi: 10.1080/21655979.2023.2254027
  • RCC. France: [cited 2023 Nov]. Available from: https://roscoff-culture-collection.org/
  • Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356. doi: 10.1021/ac60111a017
  • Monsigny M, Petit C, Roche AC. Colorimetric determination of neutral sugars by a resorcinol sulphuric acid micromethod. Anal Biochem. 1988;175(2):525–530. doi: 10.1016/0003-2697(88)90578-7
  • Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1
  • Montreuil J, Spik G, Chosson A, et al. Methods of study of the structure of glycoproteins. J Pharm Belgique. 1963;18:529–546.
  • Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3
  • Dodgson KS, Price RG. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J. 1962;84(1):106–110. doi: 10.1042/bj0840106
  • Villay A, Lakkis de Filippis F, Picton L, et al. Comparison of polysaccharide degradations by dynamic high pressure homogenisation. Food Hydrocoll. 2012;27(2):278–286. doi: 10.1016/j.foodhyd.2011.10.003
  • Adrien A, Bonnet A, Dufour D, et al. Anticoagulant activity of sulfated ulvan isolated from the green macroalga ulva rigida. Mar Drug. 2019;17(5):291–310. doi: 10.3390/md17050291
  • Zimm BH. The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys. 1948;16(12):1093–1099. doi: 10.1063/1.1746738
  • Ali G, Rihouey C, Larreta-Garde V, et al. Molecular size characterization and kinetics studies on hydrolysis of pullulan by pullulanase in an entangled alginate medium. Biomacromolecules. 2013;14(7):2234–2241. doi: 10.1021/bm400371r
  • Poinot T, Bartholin MC, Govin A, et al. Influence of the polysaccharide addition method on the properties of fresh mortars. Cem Concr Res. 2015;70:50–59. doi: 10.1016/j.cemconres.2015.01.004
  • Hemar Y, Pinder DN. DWS microrheology of a linear polysaccharide. Biomacromolecules. 2006;7(3):674–676. doi: 10.1021/bm050566l
  • Williams MAK, Vincent RR, Pinder DN, et al. Microrheological studies offer insights into polysaccharide gels. J Non-Newton Fluid Mech. 2008;149(1–3):63–70. doi: 10.1016/j.jnnfm.2007.05.006
  • Nisato G, Hébraud P, Munch JP, et al. Diffusing-wave-spectroscopy investigation of latex particle motion in polymer gels. Phys Rev E. 2000;61(3):2879. doi: 10.1103/PhysRevE.61.2879
  • Fahimi Z, Aangenendt F, Voudouris P, et al. Diffusing-wave spectroscopy in a standard dynamic light scattering setup. Phys Rev E. 2017;96(6):062611. doi: 10.1103/PhysRevE.96.062611
  • Yang H, Kang W, Yu Y, et al. A new approach to evaluate the particle growth and sedimentation of dispersed polymer microsphere profile control system based on multiple light scattering. Powder Technol. 2017;315:477–485. doi: 10.1016/j.powtec.2017.04.001
  • Geresh S, Adin I, Yarmolinsky E, et al. Characterization of the extracellular polysaccharide of Porphyridium sp.: molecular weight determination and rheological properties. Carbohydr Polym. 2002;50(2):183–189. doi: 10.1016/S0144-8617(02)00019-X
  • Gargouch N, Elleuch F, Karkouch I, et al. Potential of exopolysaccharide from Porphyridium marinum to contend with bacterial proliferation, biofilm formation, and breast cancer. Mar Drug. 2021;19(2):66. doi: 10.3390/md19020066
  • Ma J, Lin Y, Chen X, et al. Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocoll. 2014;38:119–128. doi: 10.1016/j.foodhyd.2013.11.016
  • Hentati F, Pierre G, Ursu AV, et al. Rheological investigations of water-soluble polysaccharides from the tunisian brown seaweed cystoseira compressa. Food Hydrocoll. 2020;103:105631. doi: 10.1016/j.foodhyd.2019.105631
  • Geresh S, Arad S. The extracellular polysaccharides of the red microalgae: chemistry and rheology. Bioresour Technol. 1991;38(2–3):195–201. doi: 10.1016/0960-8524(91)90154-C
  • Liberman GN, Ochbaum G, Mejubovsky-Mikhelis M, et al. Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae dixoniella grisea and Porphyridium aerugineum. Int J Biol Macromol. 2020;145:1171–1179. doi: 10.1016/j.ijbiomac.2019.09.205
  • Stankey JA, Johnson ME, Lucey JA. Effect of selected hofmeister salts on textural and rheological properties of nonfat cheese. J Dairy Sci. 2011;94(9):4264–4276. doi: 10.3168/jds.2010-3698
  • Kawakami K, Ihara T, Nishioka T, et al. Salt tolerance of an aqueous solution of a novel amphiphilic polysaccharide derivative. Langmuir. 2006;22(7):3337–3343. doi: 10.1021/la052877n
  • Chen H, Jia X, Fairweather M, et al. Characterising the sedimentation of bidisperse colloidal silica using analytical centrifugation. Adv Powder Technol. 2023;34(2):103950. doi: 10.1016/j.apt.2023.103950