45
Views
0
CrossRef citations to date
0
Altmetric
Articles

Growth and development under variable temperatures revisited: the importance of thermal thresholds

ORCID Icon & ORCID Icon
Pages 355-364 | Received 04 Jan 2018, Accepted 27 Aug 2018, Published online: 15 Sep 2018

References

  • Arrighi, J. M., E. S. Lencer, A. Jukar, D. Park, P. C. Phillips, and R. H. Kaplan. 2013. “Daily Temperature Fluctuations Unpredictably Influence Developmental Rate and Morphology at a Critical Early Larval Stage in a Frog.” BMC Ecology 13 (1): 18. doi:10.1186/1472-6785-13-18.
  • Bayu, M. S. Y. I., M. S. Ullah, Y. Takano, and T. Gotoh. 2017. “Impact of Constant versus Fluctuating Temperatures on the Development and Life History Parameters of Tetranychus urticae (Acari: Tetranychidae).” Experimental and Applied Acarology 72 (3): 205–227. doi:10.1007/s10493-017-0151-9.
  • Begon, M., J. L. Harper, and C. R. Townsend. 1986. Ecology: Individuals, Populations and Communities. Oxford, UK: Blackwell Scientific Publications.
  • Behrens, W., K. H. Hoffmann, S. Kempa, S. Gäßler, and G. Merkel-Wallner. 1983. “Effects of Diurnal Thermoperiods and Quickly Oscillating Temperatures on the Development and Reproduction of Crickets, Gryllus bimaculatus.” Oecologia 59 (2–3): 279–287. doi:10.1007/BF00378849.
  • Bryant, S. R., J. S. Bale, and C. D. Thomas. 1999. “Comparison of Development and Growth of Nettle-Feeding Larvae of Nymphalidae (Lepidoptera) under Constant and Alternating Temperature Regimes.” European Journal of Entomology 96 (2): 143–148.
  • Campbell, A., B. D. Frazer, N. Gilbert, A. P. Gutierrez, and M. Mackauer. 1974. “Temperature Requirements of Some Aphids and Their Parasites.” The Journal of Applied Ecology 11 (2): 431–438. doi:10.2307/2402197.
  • Carrington, L. B., M. V. Armijos, L. Lambrechts, C. M. Barker, and T. W. Scott. 2013. “‘Effects of Fluctuating Daily Temperatures at Critical Thermal Extremes on Aedes aegypti Life-History Traits.” PLoS ONE 8 (3): e58824. doi:10.1371/journal.pone.0058824.
  • Cayton, H. L., N. M. Haddad, K. Gross, S. E. Diamond, and L. Ries. 2015. “Do Growing Degree Days Predict Phenology across Butterfly Species?” Ecology 96 (6): 1473–1479. doi:10.1890/15-0131.1.
  • Colinet, H., B. J. Sinclair, P. Vernon, and D. Renault. 2015. “Insects in Fluctuating Thermal Environments.” Annual Review of Entomology 60 (1): 123–140. doi:10.1146/annurev-ento-010814-021017.
  • Davey, R. B. 1988. “Effect of Temperature on the Ovipositional Biology and Egg Viability of the Cattle Tick Boophilus annulatus (Acari: Ixodidae).” Experimental and Applied Acarology 5 (1–2): 1–14. doi:10.1007/BF02053812.
  • De Jong, G., and T. M. Van der Have. 2009. “Temperature Dependence of Development Rate, Growth Rate and Size: From Biophysics to Adaptation.” In Phenotypic Plasticity of Insects: Mechanisms and Consequences, edited by D. W. Whitman and T. N. Ananthakrishnan, 523–588. Enfield: Science Publishers.
  • Dong, Y., S. Dong, X. Tian, F. Wang, and M. Zhang. 2006. “Effects of Diel Temperature Fluctuations on Growth, Oxygen Consumption and Proximate Body Composition in the Sea Cucumber Apostichopus japonicus Selenka.” Aquaculture 255 (1–4): 514–521. doi:10.1016/j.aquaculture.2005.12.013.
  • Fielding, D. J., and W. G. Ruesink. 1988. “Prediction of Egg and Nymphal Developmental Times of the Squash Bug (Hemiptera: Coreidae) in the Field.” Journal of Economic Entomology 81 (5): 1377–1382. doi:10.1093/jee/81.5.1377.
  • Georges, A. 1989. “Female Turtles from Hot Nests: Is It Duration of Incubation or Proportion of Development at High Temperatures that Matters?” Oecologia 81 (3): 323–328. doi:10.1007/BF00377078.
  • Georges, A., K. Beggs, J. E. Young, and J. S. Doody. 2005. “Modelling Development of Reptile Embryos under Fluctuating Temperature Regimes.” Physiological and Biochemical Zoology 78 (1): 18–30. doi:10.1086/425200.
  • Gunderson, A. R., and J. H. Stillman. 2015. “Plasticity in Thermal Tolerance Has Limited Potential to Buffer Ectotherms from Global Warming.” Proceedings of the Royal Society B: Biological Sciences 282: 20150401. doi:10.1098/rspb.2015.0401.
  • Hokanson, K. E. F., C. F. Kleiner, and T. W. Thorslund. 1977. “Effects of Constant Temperatures and Diel Temperature Fluctuations on Specific Growth and Mortality Rates and Yield of Juvenile Rainbow Trout, Salmo gairdneri.” Journal of the Fisheries Research Board of Canada 34 (5): 639–648. doi:10.1139/f77-100.
  • Ikemoto, T., and K. Takai. 2000. “A New Linearized Formula for the Law of Total Effective Temperature and the Evaluation of Line-Fitting Methods with Both Variables Subject to Error.” Environmental Entomology 29 (4): 671–682. doi:10.1603/0046-225X-29.4.671.
  • Kaufmann, O. 1932. “Einige Bemerkungen über den Einfluss von Temperaturschwankungen auf die Entwicklungsdauer und Streuung bei Insekten und Seine Graphische Darstellung durch Kettenlinie und Hyperbel.” Zeitschrift für Morphologie und Ökologie der Tiere 25: 353–361. doi:10.2307/43261514.
  • Kingsolver, J. G., J. K. Higgins, and K. E. Augustine. 2015. “Fluctuating Temperatures and Ectotherm Growth: Distinguishing Non-Linear and Time-Dependent Effects.” Journal of Experimental Biology 218 (14): 2218–2225. doi:10.1242/jeb.120733.
  • Kontodimas, D. C., P. A. Eliopoulos, G. J. Stathas, and L. P. Economou. 2004. “Comparative Temperature-Dependent Development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) Preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): Evaluation of Linear and Various Nonlinear Models Using Specific Criteria.” Environmental Entomology 33 (1): 1–11. doi:10.1603/0046-225X-33.1.1.
  • Kutcherov, D. 2016. “Thermal Reaction Norms Can Surmount Evolutionary Constraints: Comparative Evidence across Leaf Beetle Species.” Ecology and Evolution 6 (14): 4670–4683. doi:10.1002/ece3.2231.
  • Lamb, K. P. 1961. “Some Effects of Fluctuating Temperatures on Metabolism, Development, and Rate of Population Growth in the Cabbage Aphid, Brevicoryne brassicae.” Ecology 42 (4): 740–745. doi:10.2307/1933502.
  • Ledesma, N., and L. Harrington. 2015. “Fine-Scale Temperature Fluctuation and Modulation of Dirofilaria Immitis Larval Development in Aedes aegypti.” Veterinary Parasitology 209 (1–2): 93–100. doi:10.1016/j.vetpar.2015.02.003.
  • Liu, -S.-S., F.-Z. Chen, and M. P. Zalucki. 2002. “Development and Survival of the Diamondback Moth (Lepidoptera: Plutellidae) at Constant and Alternating Temperatures.” Environmental Entomology 31 (2): 221–231. doi:10.1603/0046-225X-31.2.221.
  • Liu, -S.-S., G.-M. Zhang, and J. Zhu. 1995. “Influence of Temperature Variations on Rate of Development in Insects: Analysis of Case Studies from Entomological Literature.” Annals of the Entomological Society of America 88 (2): 107–119. doi:10.1093/aesa/88.2.107.
  • Lopatina, E. B. 2003. “Effect of Daily Thermoperiods on the Duration of Individual Development in Ants (Hymenoptera, Formicidae).” Entomological Review 83: 1092–1101.
  • Lyons, C. L., M. Coetzee, and S. L. Chown. 2013. “Stable and Fluctuating Temperature Effects on the Development Rate and Survival of Two Malaria Vectors, Anopheles arabiensis and Anopheles funestus.” Parasites & Vectors 6 (1): 104. doi:10.1186/1756-3305-6-104.
  • Mironidis, G. K. 2014. “Development, Survivorship and Reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under Fluctuating Temperatures.” Bulletin of Entomological Research 104 (6): 751–764. doi:10.1017/S0007485314000595.
  • Mironidis, G. K., and M. Savopoulou-Soultani. 2008. “Development, Survivorship, and Reproduction of Helicoverpa Armigera (Lepidoptera: Noctuidae) under Constant and Alternating Temperatures.” Environmental Entomology 37 (1): 16–28. doi:10.1093/ee/37.1.16.
  • Niehaus, A. C., M. J. Angilletta, M. W. Sears, C. E. Franklin, and R. S. Wilson. 2012. “Predicting the Physiological Performance of Ectotherms in Fluctuating Thermal Environments.” Journal of Experimental Biology 215 (4): 694–701. doi:10.1242/jeb.058032.
  • Pelster, B. 1997. “Oxygen, Temperature, and pH Influences on the Development of Nonmammalian Embryos and Larvae.” In Development of Cardiovascular Systems: Molecules to Organisms, edited by W. W. Burggren and B. B. Keller, 227–239. New York: Cambridge University Press.
  • Philips, C. R., D. A. Herbert, T. P. Kuhar, D. D. Reisig, and E. A. Roberts. 2012. “Using Degree-Days to Predict Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Egg and Larval Population Peaks.” Environmental Entomology 41 (4): 761–767. doi:10.1603/EN12026.
  • Ratte, H. T. 1984. “Temperature and Insect Development.” In Environmental Physiology and Biochemistry of Insects, edited by K. H. Hoffmann 33–66. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-70020-0_2.
  • Ruel, J. J., and M. P. Ayres. 1999. “Jensen’s Inequality Predicts Effects of Environmental Variation.” Trends in Ecology and Evolution 14 (9): 361–366. doi:10.1016/S0169-5347(99)01664-X.
  • Shine, R., and P. S. Harlow. 1996. “Maternal Manipulation of Offspring Phenotypes via Nest-Site Selection in an Oviparous Lizard.” Ecology 77 (6): 1808–1817. doi:10.2307/2265785.
  • Sniegula, S., M. J. Golab, S. M. Drobniak, and F. Johansson. 2016. “Seasonal Time Constraints Reduce Genetic Variation in Life-History Traits along a Latitudinal Gradient.” Journal of Animal Ecology 85 (1): 187–198. doi:10.1111/1365-2656.12442.
  • Stevenson, D. E., G. J. Michels, J. B. Bible, J. A. Jackman, and M. K. Harris. 2008. “Physiological Time Model for Predicting Adult Emergence of Western Corn Rootworm (Coleoptera: Chrysomelidae) in the Texas High Plains.” Journal of Economic Entomology 101 (5): 1584–1593. doi:10.1093/jee/101.5.1584.
  • Telemeco, R. S., K. C. Abbott, and F. J. Janzen. 2013. “Modeling the Effects of Climate Change–Induced Shifts in Reproductive Phenology on Temperature-Dependent Traits.” The American Naturalist 181 (5): 637–648. doi:10.1086/670051.
  • Tian, X., S. Dong, F. Wang, and L. Wu. 2006. “The Growth of Juvenile Chinese Shrimp, Fenneropenaeus chinensis Osbeck, at Constant and Diel Fluctuating Temperatures.” Journal of Shellfish Research 25 (3): 1007–1011. doi:10.2983/0730-8000(2006)25[1007:TGOJCS]2.0.CO;2.
  • Trudgill, D. L., A. Honěk, D. Li, and N. M. Van Straalen. 2005. “Thermal Time – Concepts and Utility.” Annals of Applied Biology 146 (1): 1–14. doi:10.1111/j.1744-7348.2005.04088.x.
  • Vangansbeke, D., J. Audenaert, D. T. Nguyen, R. Verhoeven, B. Gobin, L. Tirry, and P. De Clercq. 2015. “Diurnal Temperature Variations Affect Development of a Herbivorous Arthropod Pest and Its Predators.” PLoS ONE 10 (4): e0124898. doi:10.1371/journal.pone.0124898.
  • Wagner, T. L., H. Wu, P. J. H. Sharpe, R. M. Schoolfield, and R. N. Coulson. 1984. “Modeling Insect Development Rates: A Literature Review and Application of A Biophysical Model.” Annals of the Entomological Society of America 77 (2): 208–220. doi:10.1093/aesa/77.2.208.
  • Warren, J. A., and G. S. Anderson. 2013a. “The Development of Protophormia terraenovae (Robineau-Desvoidy) at Constant Temperatures and Its Minimum Temperature Threshold.” Forensic Science International 233 (1–3): 374–379. doi:10.1016/j.forsciint.2013.10.012.
  • Warren, J. A., and G. S. Anderson. 2013b. “Effect of Fluctuating Temperatures on the Development of a Forensically Important Blow Fly, Protophormia terraenovae (Diptera: Calliphoridae).” Environmental Entomology 42 (1): 167–172. doi:10.1603/EN12123.
  • Worner, S.P. 1992. “Performance Of Phenological Models under Variable Temperature Regimes: Consequences Of The Kaufmann or Rate Summation Effect.” Environmental Entomology 21 (4): 689–699. doi: 10.1093/ee/21.4.689.
  • Wu, T. H., S. F. Shiao, and T. Okuyama. 2015. “Development of Insects under Fluctuating Temperature: A Review and Case Study.” Journal of Applied Entomology 139 (8): 592–599. doi:10.1111/jen.12196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.