2,153
Views
9
CrossRef citations to date
0
Altmetric
Original Reports

Grain Boundary Motion under Dynamic Loading: Mechanism and Large-Scale Molecular Dynamics Simulations

, , &
Pages 220-227 | Received 10 Apr 2013, Accepted 29 Jul 2013, Published online: 18 Sep 2013

REFERENCES

  • Hirth JP, Lothe J. Theory of dislocations. 2nd ed. Malabar, FL: Krieger; 1992.
  • Sutton AP, Balluffi RW. Interfaces in crystalline materials. Oxford: Oxford University Press; 1997.
  • Gottstein G, Shvindlerman LS. Grain boundary migration in metals: thermodynamics, kinetics, applications. 2nd ed. Boca Raton: Taylor & Francis; 2010.
  • Rupert TJ, Gianola DS, Gan Y, Hemker KJ. Experimental observations of stress-driven grain boundary migration. Science. 2009;326(5960):686–690. doi: 10.1126/science.1178226
  • Gray GT. High-strain-rate deformation: mechanical behavior and deformation substructures induced. Ann Rev Mater Res. 2012;42(1):285–303. doi: 10.1146/annurev-matsci-070511-155034
  • Meyers MA. Dynamic behavior of materials. Hoboken, NJ: John Wiley & Sons; 1994.
  • Rudd RE, Germann TC, Remington TC, Wark JS. Metal deformation and phase transitions at extremely high strain rates. MRS Bull. 2011;35(12):999–1006. doi: 10.1557/mrs2010.705
  • Bringa EM, Rosolankova K, Rudd RE, Remington BA, Wark JS, Duchaineau M, Kalantar DH, Hawreliak J, Belak J. Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat Mater. 2006;5(10):805–809. doi: 10.1038/nmat1735
  • Holian BL, Lomdahl PS. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science. 1998;280(5372):2085–2088. doi: 10.1126/science.280.5372.2085
  • Bringa EM, Caro A, Wang Y, Victoria M, McNaney JM, Remington BA, Smith RF, Torralva BR, Van Swygenhoven H. Ultrahigh strength in nanocrystalline materials under shock loading. Science. 2005;309(5742): 1838–1841. doi: 10.1126/science.1116723
  • Kadau K, Germann TC, Lomdahl PS, Holian BL. Microscopic view of structural phase transitions induced by shock waves. Science. 2002;296(5573):1681–1684. doi: 10.1126/science.1070375
  • Kalantar DH, Belak JF, Collins GW, Colvin JD, Davies HM, Eggert JH, Germann TC, Hawreliak J, Holian BL, Kadau K, Lomdahl PS, Lorenzana HE, Meyers MA, Rosolankova K, Schneider MS, Sheppard J, Stölken JS, Wark JS. Direct observation of the α-ε transition in shock-compressed iron via nanosecond X-ray diffraction. Phys Rev Lett. 2005;95(7):075502–075504. doi: 10.1103/PhysRevLett.95.075502
  • Belonoshko AB. Atomistic simulation of shock wave-induced melting in argon. Science. 1997;275(5302): 955–957. doi: 10.1126/science.275.5302.955
  • Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV. Spall fracture. Shock wave and high pressure phenomena. New York: Springer-Verlag; 2003.
  • Follansbee PS, Gray GT. Dynamic deformation of shock prestrained copper. Mater Sci Eng A Struct Mater. 1991; 138(1):23–31. doi: 10.1016/0921-5093(91)90673-B
  • Murr LE. Effects of peak pressure, pulse duration, and repeated loading on the residual structure and properties of shock deformed metals and alloys. In: Meyers MA, Murr LE, editors. Shock waves and high strain-rate phenomena in metals. New York: Plenum Press; 1981. p. 753–777.
  • Escobedo JP, Dennis-Koller D, Cerreta EK, Patterson BM, Bronkhorst CA, Hansen BL, Tonks D, Lebensohn RA. Effects of grain size and boundary structure on the dynamic tensile response of copper. J Appl Phys. 2011;110(3):|p033513-1–13. doi: 10.1063/1.3607294
  • Cerreta EK, Escobedo JP, Perez-Bergquist AG, Dennis-Koller D, Trujillo CP, Gray III GT, Brandl C, Germann TC. Early stage dynamic damage and the role of grain boundary type. Scr Mater. 2012;66(9):638–641. doi: 10.1016/j.scriptamat.2012.01.051
  • Perez-Bergquist AG, Cerreta EK, Trujillo CP, Gray GT, Brandl C, Germann TC. Transmission electron microscopy study of the role of interface structure at 100/111 boundaries in a shocked copper multi-crystal. Scr Mater. 2012;67(4):412–415. doi: 10.1016/j.scriptamat.2012.05.035
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. doi: 10.1006/jcph.1995.1039
  • Brandl C, Germann TC. Shock loading and release of a small angle tilt grain boundary in CU. In: Elert ML, Buttler WT, Borg JP, Jordan JL, Vogler TJ, editors. Shock compression of condensed matter; 2011. AIP Conf. Proc.; Chicago; 2012. p. 1299–1302.
  • Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem. 1987;91(19):4950–4963. doi: 10.1021/j100303a014
  • Hirth JP, Pond RC, Hoagland RG, Liu X-Y, Wang J. Interface defects, reference spaces and the Frank–Bilby equation. Prog Mater Sci. 2013;58(5):749–823. doi: 10.1016/j.pmatsci.2012.10.002
  • Mishin Y, Mehl M, Papaconstantopoulos D, Voter A, Kress J. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys Rev B. 2001;63(22):|p224106-1–16. doi: 10.1103/PhysRevB.63.224106
  • Frolov T, Mishin Y. Thermodynamics of coherent interfaces under mechanical stresses. II. Application to atomistic simulation of grain boundaries. Phys Rev B. 2012;85(22):|p224107-1–18.
  • Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang JY, Hirth JP. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 2010;58(6):2262–2270. doi: 10.1016/j.actamat.2009.12.013
  • Wang J, Anderoglu O, Hirth JP, Misra A, Zhang X. Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals. Appl Phys Lett. 2009;95(2):021908–021903. doi: 10.1063/1.3176979
  • Lucadamo G, Medlin DL. Geometric origin of hexagonal close packing at a grain boundary in gold. Science. 2003;300(5623):1272–1275. doi: 10.1126/science.1083890
  • Janssens KGF, Olmsted DL, Holm EA, Foiles SM, Plimpton SJ, Derlet PM. Computing the mobility of grain boundaries. Nat Mater. 2006;5(2):124–127. doi: 10.1038/nmat1559
  • Olmsted DL, Holm EA, Foiles SM. Survey of computed grain boundary properties in face-centered cubic metals II: grain boundary mobility. Acta Mater. 2009;57(13):3704–3713. doi: 10.1016/j.actamat.2009.04.015
  • Zhang H, Mendelev MI, Srolovitz DJ. Computer simulation of the elastically driven migration of a flat grain boundary. Acta Mater. 2004;52(9):2569–2576. doi: 10.1016/j.actamat.2004.02.005
  • Germann TC, Holian BL, Lomdahl P, Ravelo R. Orientation dependence in molecular dynamics simulations of shocked single crystals. Phys Rev Lett. 2000;84(23):5351–5354. doi: 10.1103/PhysRevLett.84.5351