1,392
Views
7
CrossRef citations to date
0
Altmetric
Original Reports

Cracking in a Fe–25Mn–3Si–3Al Steel

, , , , , , & show all
Pages 204-208 | Received 31 Dec 2013, Accepted 11 Apr 2014, Published online: 08 May 2014

References

  • Jin JE, Lee YK. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel. Acta Mater. 2012;60:1680–1688. doi: 10.1016/j.actamat.2011.12.004
  • Gutierrez-Urrutia I, Raabe D. Grain size effect on strain hardening in twinning-induced plasticity steels. Scripta Mater. 2012;66:992–996. doi: 10.1016/j.scriptamat.2012.01.037
  • Grassel O, Kruger L, Frommeyer G, Meyer LW. High strength Fe–Mn–(Al,Si) TRIP/TWIP steels development-properties-application. Int J Plast. 2000;16:1391–1409. doi: 10.1016/S0749-6419(00)00015-2
  • Zhang J, Di H, Mao K, Wang X, Han Z, Ma T. Processing maps for hot deformation of a high-Mn TWIP steel: a comparative study of various criteria based on dynamic materials model. Mater Sci Eng A. 2013;587:110–122. doi: 10.1016/j.msea.2013.08.036
  • Frommeyer G, Brux U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003;43:438–446. doi: 10.2355/isijinternational.43.438
  • Dancette S, Delannay L, Renard K, Melchior MA, Jacques PJ. Crystal plasticity modeling of texture development and hardening in TWIP steels. Acta Mater. 2012;60: 2135–2145. doi: 10.1016/j.actamat.2012.01.015
  • Liu JB, Liu XH, Liu W, Zeng YW, Shu KY. Microstructure and hardness evolution during isothermal process at 700 °C for Fe–24Mn–0.7Si–1.0Al TWIP steel. Mater Charact. 2010;61:1356–1358. doi: 10.1016/j.matchar.2010.09.007
  • Allain S, Chateau J-P, Dahmoun D, Bouaziz O. Modeling of mechanical twinning in a high manganese content austenitic steel. Mater Sci Eng A. 2004;387–389:272–276. doi: 10.1016/j.msea.2004.05.038
  • Vercammen S, Blanpain B, Cooman BCD, Wollants P. Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning. Acta Mater. 2004;52:2005–2012. doi: 10.1016/j.actamat.2003.12.040
  • Shen YF, Wang YD, Liu XP, Sun X, Lin Peng R, Zhang SY, Zuo L, Liaw PK. Deformation mechanisms of a 20 Mn TWIP steel investigated by in situ neutron diffraction and TEM. Acta Mater. 2013;61:6093–6106. doi: 10.1016/j.actamat.2013.06.051
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57:1–62. doi: 10.1016/j.pmatsci.2011.05.001
  • Zhu YT, Wu XL, Liao XZ, Narayan J, Kecskes LJ, Mathaudhu SN. Dislocation–twin interactions in nanocrystalline fcc metals. Acta Mater. 2011;59:812–821. doi: 10.1016/j.actamat.2010.10.028
  • Saleh AA, Pereloma EV, Clausen B, Brown DW, Tomé CN, Gazder AA. On the evolution and modelling of lattice strains during the cyclic loading of TWIP steel. Acta Mater. 2013;61:5247–5262. doi: 10.1016/j.actamat.2013.05.017
  • Bracke L, Mertens G, Penning J, Cooman BCD, Liebeherr M, Akdut N. Influence of phase transformations on the mechanical properties of high-strength austenitic Fe–Mn–Cr steel. Metall Mater Trans A. 2006;37:307–317. doi: 10.1007/s11661-006-0002-5
  • Fabrègue D, Landron C, Bouaziz O, Maire E. Damage evolution in TWIP and standard austenitic steel by means of 3D X ray tomography. Mater Sci Eng A. 2013;579: 92–98. doi: 10.1016/j.msea.2013.05.013
  • Hamada AS, Karjalainen LP, Puustinen J. Fatigue behavior of high-Mn TWIP steels. Mater Sci Eng A. 2009;517:68–77. doi: 10.1016/j.msea.2009.03.039
  • Liu SC, Hashida T, Takahashi H, Kuwano H, Hamaguchi Y. A study on fractography in the low-temperature brittle fracture of an 18Cr–18Mn–0.7N austenitic steel. Metall Mater Trans A. 1998;29:791–798. doi: 10.1007/s11661-998-0270-3
  • Miao J, Pollock TM, Wayne JJ. Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy. Acta Mater. 2012;60(6–7):2840–2854. doi: 10.1016/j.actamat.2012.01.049
  • Blochwitz C, Tirschler W. Twin boundaries as crack nucleation sites. Cryst Res Tech. 2005;40(1–2):32–41. doi: 10.1002/crat.200410305
  • Blochwitz C, Tirschler W. Influence of the crystalline texture on the fatigue damage. Proceedings of the Eighth International Fatigue Congress; 2002; Stockholm. Vol. 3; p. 1625–1632.
  • Castelluccio GM, McDowell DL. Effect of annealing twins on crack initiation under high cycle fatigue conditions. J Mater Sci. 2013;48(6):2376–2387. doi: 10.1007/s10853-012-7021-y
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324:349–352. doi: 10.1126/science.1159610
  • Jin JE, Lee YK. Strain hardening behavior of a Fe–18Mn–0.6C–1.5Al TWIP steel. Mater Sci Eng A. 2009;527: 157–161. doi: 10.1016/j.msea.2009.08.028
  • Heinz A, Neumann P. Crack initiation during high cycle fatigue of an austenitic steel. Acta Metall Mater. 1990;38(10):19331940. doi: 10.1016/0956-7151(90)90305-Z
  • Zhou HF, Qu SX, Yang W. Toughening by nano-scaled twin boundaries in nanocrystals. Model Simul Mater Sci Eng. 2010;18:065002. doi: 10.1088/0965-0393/18/6/065002