1,530
Views
12
CrossRef citations to date
0
Altmetric
Original Reports

Percolation and Universal Scaling in Composite Infiltration Processing

, , &
Pages 7-15 | Received 16 Apr 2014, Accepted 22 Jul 2014, Published online: 28 Aug 2014

References

  • Birch S. SAE automotive engineering on-line; ‘BMW i3, the inside story: what it's made of, how it's made’ [cited 2013 May 9, last accessed July 2014]. Available from: http://www.sae.org/mags/aei/12056/.
  • Brøndsted P, Lilholt H, Lystrup A. Composite materials for wind power turbine blades. Annu Rev Mater Res. 2005;35:505–538. doi: 10.1146/annurev.matsci.35.100303.110641
  • CPSTechnologies. Reliability with smart composite products. 2012 [Cited 2014 July]. Available from: http://www.alsic.com/
  • Eustathopoulos N, Nicholas MG, Drevet B. Wettability at high temperature. Amsterdam: Pergamon-Elsevier Science; 1999.
  • Dullien FAL. Porous media, fluid transport and pore structure. 2nd ed. New York (NY): Academic Press Inc., Harcourt Brace Jovanovich Publishers, San Diego, USA; 1992.
  • Sahimi M. Flow and transport in porous media and fractured rock – from classical methods to modern approaches. 2nd, Revised and Enlarged Edition. Weinheim: Wiley-VCH Verlag; 2011.
  • Brooks RH, Corey AT. Hydraulic properties of porous media. Fort Collins (CO): Civil Engineering Department, Colorado State University; 1964. p. 27.
  • Bear J, Bachmat Y. Introduction to modeling of transport phenomena in porous media. Dordrecht: Kluwer Academic Publishers; 1990.
  • Bahraini M, Molina JM, Kida M, Weber L, Narciso J, Mortensen A. Measuring and tailoring capillary forces during liquid metal infiltration. Curr Opin Solid St M. 2005;9:196–201. doi: 10.1016/j.cossms.2006.02.007
  • van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. 1980;44:892–898. doi: 10.2136/sssaj1980.03615995004400050002x
  • Nordlund M, Michaud VJ. Dynamic saturation curve measurement for resin flow in glass fibre reinforcement. Compos Part A-Appl Sci. 2012;43:333–343. doi: 10.1016/j.compositesa.2011.12.001
  • Chatzis I, Dullien FAL. Modeling pore structure by 2-D and 3-D networks with application to sandstones. J Can Petrol Technol. 1977;16:97–108.
  • deGennes PG, Guyon E. Lois générales pour l'injection d'un fluide dans un milieu poreux aléatoire. J Mécanique. 1978;17:403–432.
  • Stauffer D, Aharony A. Introduction to percolation theory. Revised 2nd ed. Boca Raton (FL): CRC Press; 1994.
  • Hunt A, Ewing R. Percolation theory for flow in porous media. Heidelberg: Springer; 2009.
  • Wilkinson D. Percolation effects in immiscible displacement. Phys Rev A. 1986;34:1380–1391. doi: 10.1103/PhysRevA.34.1380
  • Ebrahimi F. Invasion percolation: a computational algorithm for complex phenomena. Comput Sci Eng. 2010;12:84–93. doi: 10.1109/MCSE.2010.42
  • Wilkinson D, Barsony M. Monte Carlo study of invasion percolation clusters in two and three dimensions. J Phys A-Math Gen. 1984;17:L129–L135. doi: 10.1088/0305-4470/17/3/007
  • Berkowitz B, Ewing RP. Percolation theory and network modeling applications in soil physics. Surv Geophys. 1998;19:23–72. doi: 10.1023/A:1006590500229
  • Sheppard AP, Knackstedt MA, Pinczewski WV, Sahimi M. Invasion percolation: new algorithms and universality classes. J Phys A-Math Gen. 1999;32:L521–L529. doi: 10.1088/0305-4470/32/49/101
  • Léger A, Calderon N, Charvet R, Dufour W, Bacciarini C, Weber L, Mortensen A. Capillarity in pressure infiltration: improvements in characterization of high-temperature systems. J Mater Sci. 2012;47:8419–8430. doi: 10.1007/s10853-012-6645-2
  • Giesche H. Chapter 2.7, mercury porosimetry. In: Schüth F, Sing KSW, Weitkamp J, editors. Handbook of porous solids. Weinheim: Wiley-VCH; 2002. p. 309–351.
  • Lenormand R. Flow through porous media: limits of fractal patterns. Proc Roy Soc London. 1989;A423:159–168.
  • Lenormand R. Liquids in porous media. J Phys-Condens Mat. 1990;2:SA79–SA88. doi: 10.1088/0953-8984/2/1/006
  • Thompson AH, Katz AJ, Kronin CE. The microgeometry and transport properties of sedimentary rock. Adv Phys. 1987;36:625–694. doi: 10.1080/00018738700101062
  • Larson RG, Morrow NR. Effects of sample size on capillary pressures in porous media. Powder Technol. 1981;30:123–138. doi: 10.1016/0032-5910(81)80005-8
  • Chen JD, Wada N. Visualization of immiscible displacement in a three-dimensional transparent porous medium. Exp Fluids. 1986;4:336–338.
  • Chen J-D, Dias MM, Patz S, Schwartz LM. Magnetic resonance imaging of immiscible-fluid displacement in porous media. Phys Rev Lett. 1988;61:1489–1492. doi: 10.1103/PhysRevLett.61.1489
  • Clement E, Baudet C, Hulin JP. Multiple scale structure of non wetting fluid invasion fronts in 3D model porous media. J Phys Lett. 1985;46:L1163–L1171. doi: 10.1051/jphyslet:0198500460240116300
  • Clement E, Baudet C, Guyon E, Hulin JP. Invasion front structure in a 3D model porous medium under a hydrostatic pressure gradient. J Phys D Appl Phys. 1987;20:608–615. doi: 10.1088/0022-3727/20/5/007
  • Hulin JP, Clement E, Baudet C, Gouyet JF, Rosso M. Quantitative analysis of an invading-fluid invasion front under gravity. Phys Rev Lett. 1988;61:333–336. doi: 10.1103/PhysRevLett.61.333
  • Feder J. Fractals. New York (NY): Plenum Press; 1988.
  • Vyssotsky VA, Gordon SB, Frisch HL, Hammersley JM. Critical percolation probabilities (bond problem). Phys Rev. 1961;123:1566–1567. doi: 10.1103/PhysRev.123.1566
  • Gouyet JF. Physics and fractal structures. Paris, New York: Masson-Springer; 1996.
  • Wilkinson D, Willemsen JF. Invasion percolation: a new form of percolation theory. J Phys A-Math Gen. 1983;16:3365–3376. doi: 10.1088/0305-4470/16/14/028
  • Yanuka M, Dullien FAL, Elrick DE. Percolation processes and porous media: I. geometrical and topological model of porous media using a three-dimensional joint pore size distribution. J Colloid Interf Sci. 1986;112: 24–41. doi: 10.1016/0021-9797(86)90066-4
  • Yanuka M. Percolation processes and porous media: II. Computer calculations of percolation probabilities and cluster formation. J Colloid Interf Sci. 1989;127: 35–47.
  • Frisch HL, Hammersley JM, Welsh DJA. Monte Carlo estimates of percolation probabilities for various lattices. Phys Rev. 1962;126:949–951. doi: 10.1103/PhysRev.126.949
  • Perham TJ, Chrzan DC, Jonghe LCD. Invasion percolation model of co-interpenetrating ceramic-metal composites. Model Simul Mater Sci. 2002;10:103–119. doi: 10.1088/0965-0393/10/2/301
  • Xu K, Daian J-F, Quenard D. Multiscale structures to describe porous media part II: transport properties and application to test materials. Transp Porous Med. 1997;26:319–338. doi: 10.1023/A:1006519801173
  • Bird NRA, Dexter AR. Simulation of soil water retention using random fractal networks. Eur J Soil Sci. 1997;48:633–641. doi: 10.1046/j.1365-2389.1997.00119.x
  • Berkowitz B, Balberg I. Percolation theory and its application to groundwater hydrology. Water Resour Res. 1993;29:775–794. doi: 10.1029/92WR02707
  • deGennes PG. Partial filling of a fractal structure by a wetting fluid. In: Adler D, Fritzsche H, Ovshinsky SR, editors. Physics of disordered media. New York and London: Plenum Press; 1985. p. 227–241.
  • Bird NRA, Bartoli F, Dexter AR. Water retention models for fractal soil structures. Eur J Soil Sci. 1996;47: 1–6. doi: 10.1111/j.1365-2389.1996.tb01365.x
  • Perrier E, Rieu M, Sposito G, de Marsily G. Models of the water retention curve for soils with a fractal pore size distribution. Water Resour Res. 1996;32: 3025–3031. doi: 10.1029/96WR01779
  • Gimenez D, Perfect E, Rawls WJ, Pachepsky Y. Fractal models for predicting soil hydraulic properties: a review. Eng Geol. 1997;48:161–183. doi: 10.1016/S0013-7952(97)00038-0
  • Ghanbarian-Alavijeh B, Hunt AG. Comments on, ‘More general capillary pressure and relative permeability models from fractal geometry’ by Kewen Li. J Contam Hydrol. 2012;140–141:21–23. doi: 10.1016/j.jconhyd.2012.08.004