1,479
Views
18
CrossRef citations to date
0
Altmetric
Original Reports

In situ Observation of Defect Annihilation in Kr Ion-Irradiated Bulk Fe/Amorphous-Fe2Zr Nanocomposite Alloy

, , , , , , , & show all
Pages 35-42 | Received 08 Jul 2014, Accepted 31 Jul 2014, Published online: 26 Aug 2014

References

  • Grimes RW, Konings RJ, Edwards L. Greater tolerance for nuclear materials. Nat Mater. 2008;7:683–685.
  • Zinkle SJ, Busby JT. Structural materials for fission and fusion energy. Mater Today. 2009;12:12–19. doi: 10.1016/S1369-7021(09)70294-9
  • Zinkle SJ, Was GS. Materials challenges in nuclear energy. Acta Materialia. 2013;61:735–758. doi: 10.1016/j.actamat.2012.11.004
  • Sickafus KE, Grimes RW, Valdez JA, Cleave A, Tang M, Ishimaru M, Corish SM, Stanek CR, Uberuaga BP. Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat Mater. 2007;6:217–223.
  • Odette GR, Alinger MJ, Wirth BD. Recent Developments in Irradiation-Resistant Steels. Annu Rev Mater Res. 2008;38:471–503. doi: 10.1146/annurev.matsci.38.060407.130315
  • Misra A, Verdier M, Lu YC, Kung H, Mitchell TE, Nastasi M, Embury JD. Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites. Scripta Mater. 1998;39:555–560. doi: 10.1016/S1359-6462(98)00196-1
  • Anderson P, Li C. Hall-Petch relations for multilayered materials. Nanostruct Mater. 1995;5:349–362. doi: 10.1016/0965-9773(95)00250-I
  • Hoagland R, Mitchell T, Hirth J, Kung H. On the strengthening effects of interfaces in multilayer fee metallic composites. Philos Mag A. 2002;82:643–664.
  • Zhang X, Misra A, Wang H, Shen T, Nastasi M, Mitchell T, Hirth J, Hoagland R, Embury J. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater. 2004;52:995–1002. doi: 10.1016/j.actamat.2003.10.033
  • Zhang JY, Liu Y, Chen J, Chen Y, Liu G, Zhang X, Sun J. Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater Sci Eng A. 2012;552:392–398. doi: 10.1016/j.msea.2012.05.056
  • Zhang X, Li N, Anderoglu O, Wang H, Swadener JG, Höchbauer T, Misra A, Hoagland RG. Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation. Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 2007;261:1129–1132.
  • Zhang X, Fu E, Li N, Misra A, Wang Y-Q, Shao L, Wang H. Design of Radiation Tolerant Nanostructured Metallic Multilayers. J Eng Mater Technol. 2012;134:041010. doi: 10.1115/1.4006979
  • Misra A, Demkowicz M, Zhang X, Hoagland R. The radiation damage tolerance of ultra-high strength nanolayered composites. JOM J Miner Metal Mater Soc. 2007;59: 62–65. doi: 10.1007/s11837-007-0120-6
  • Fu EG, Misra A, Wang H, Shao L, Zhang X. Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J Nucl Mater. 2010;407:178–188. doi: 10.1016/j.jnucmat.2010.10.011
  • Fu EG, Wang H, Carter J, Shao L, Wang YQ, Zhang X. Fluence-dependent radiation damage in helium (He) ion-irradiated Cu/V multilayers. Philos Mag. 2012;93: 883–898. doi: 10.1080/14786435.2012.735773
  • Fu EG, Carter J, Swadener G, Misra A, Shao L, Wang H, Zhang X. Size dependent enhancement of helium ion irradiation tolerance in sputtered Cu/V nanolaminates. J Nucl Mater. 2009;385:629–632. doi: 10.1016/j.jnucmat.2008.12.308
  • Yuan W. Helium effect on the stability of the interface of Cu/W nanomultilayer. Acta Phys Sin. 2012;61: Article no. 176802. Available from http://wulixb.iphy.ac.cn/EN/abstract/abstract50594.shtml
  • Li N, Carter JJ, Misra A, Shao L, Wang H, Zhang X. The influence of interfaces on the formation of bubbles in He-ion-irradiated Cu/Mo nanolayers. Philos Mag Lett. 2010;91:18–28. doi: 10.1080/09500839.2010.522210
  • Yu KY, Liu Y, Fu EG, Wang YQ, Myers MT, Wang H, Shao L, Zhang X. Comparisons of radiation damage in He ion and proton irradiated immiscible Ag/Ni nanolayers. J Nucl Mater. 2013;440:310–318. doi: 10.1016/j.jnucmat.2013.04.069
  • Wei QM, Li N, Mara N, Nastasi M, Misra A. Suppression of irradiation hardening in nanoscale V/Ag multilayers. Acta Mater. 2011;59:6331–6340. doi: 10.1016/j.actamat.2011.06.043
  • Li N, Martin MS, Anderoglu O, Misra A, Shao L, Wang H, Zhang X. He ion irradiation damage in Al/Nb multilayers. J Appl Phys. 2009;105:123522–123528. doi: 10.1063/1.3138804
  • Li N, Fu EG, Wang H, Carter JJ, Shao L, Maloy SA, Misra A, Zhang X. He ion irradiation damage in Fe/W nanolayer films. J Nucl Mater. 2009;389:233–238. doi: 10.1016/j.jnucmat.2009.02.007
  • Demkowicz MJ, Bellon P, Wirth BD. Atomic-scale design of radiation-tolerant nanocomposites. MRS Bulletin. 2010;35:992–998. doi: 10.1557/mrs2010.704
  • Zhang X, Fu EG, Misra A, Demkowicz MJ. Interface-enabled defect reduction in He ion irradiated metallic multilayers. JOM. 2010;62:75–78. doi: 10.1007/s11837-010-0185-5
  • Yu KY, Sun C, Chen Y, Liu Y, Wang H, Kirk MA, Li M, Zhang X. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: an in situ study. Philos Mag. 2013;93:3547–3562. doi: 10.1080/14786435.2013.815378
  • Xu W, Zhang Y, Cheng G, Jian W, Millett PC, Koch CC, Mathaudhu SN, Zhu Y. In-situ atomic-scale observation of irradiation-induced void formation. Nat Commun. 2013;4:2288.
  • Kaoumi D, Motta AT, Birtcher RC. A thermal spike model of grain growth under irradiation. J Appl Phys. 2008;104:073525. doi: 10.1063/1.2988142
  • Sun C, Song M, Yu K, Chen Y, Kirk M, Li M, Wang H, Zhang X. In situ Evidence of Defect Cluster Absorption by Grain Boundaries in Kr Ion Irradiated Nanocrystalline Ni. Metall Mater Trans A. 2013;43:1966–1974.
  • Yu KY, Bufford D, Sun C, Liu Y, Wang H, Kirk MA, Li M, Zhang X. Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. Nat Commun. 2013;4:1377. doi: 10.1038/ncomms2382
  • Yu KY, Bufford D, Khatkhatay F, Wang H, Kirk MA, Zhang X. In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag. Scripta Materialia. 2013;69:385–388. doi: 10.1016/j.scriptamat.2013.05.024
  • Sun C, Bufford D, Chen Y, Kirk M, Wang Y, Li M, Wang H, Maloy S, Zhang X. In situ study of defect migration kinetics in nanoporous Ag with enhanced radiation tolerance. Sci Rep 3737. 2014;4: Article no. 3737.
  • Fu EG, Caro M, Zepeda-Ruiz LA, Wang YQ, Baldwin K, Bringa E, Nastasi M, Caro A. Surface effects on the radiation response of nanoporous Au foams. Appl Phys Lett. 2012;101:191607. doi: 10.1063/1.4764528
  • Bringa EM, Monk JD, Caro A, Misra A, Zepeda-Ruiz L, Duchaineau M, Abraham F, Nastasi M, Picraux ST, Wang YQ, Farkas D. Are Nanoporous Materials Radiation Resistant? Nano Lett. 2011;12:3351–3355.
  • Kiener D, Hosemann P, Maloy S, Minor A. In situ nanocompression testing of irradiated copper. Nat mater. 2011;10:608–613.
  • Landau P, Guo Q, Hattar K, Greer JR. The Effect of He Implantation on the Tensile Properties and Microstructure of Cu/Fe Nano-Bicrystals. Adv Graph Mag. 2013;23:1281–1288.
  • Han W, Demkowicz MJ, Mara NA, Fu E, Sinha S, Rollett AD, Wang Y, Carpenter JS, Beyerlein IJ, Misra A. Design of Radiation Tolerant Materials Via Interface Engineering. Adva Mater. 2013;25:6975–6979. doi: 10.1002/adma.201303400
  • Stein F, Sauthoff G, Palm M. Experimental determination of intermetallic phases, phase equilibria, and invariant reaction temperatures in the Fe-Zr system. J Phase Equilib Diffus. 2002;23:480–494. doi: 10.1361/105497102770331172
  • Liu Y, Livingston JD, Allen SM. Room-temperature deformation and stress-induced phase. Metall Mater Trans A. 1992;23:3303–3308.