1,202
Views
3
CrossRef citations to date
0
Altmetric
Original Reports

A Percolative Deformation Process Between Nanograins Promotes Dynamic Shear Localization

, &
Pages 76-81 | Received 16 May 2014, Accepted 20 Aug 2014, Published online: 22 Sep 2014

References

  • Bai Y, Dodd B. Adiabatic shear localization: occurrence, theories, and applications. Oxford: Pergamon Press; 1992.
  • Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. J Appl Phys. 1944;15(1):22–32. doi: 10.1063/1.1707363
  • Rittel D, Landau P, Venkert A. Dynamic recrystallization as a potential cause for adiabatic shear failure. Phys Rev Lett. 2008;101(16):165501. doi: 10.1103/PhysRevLett.101.165501
  • Rittel D, Wang ZG, Merzer M. Adiabatic shear failure and dynamic stored energy of cold work. Phys Rev Lett. 2006;96(7):075502. doi: 10.1103/PhysRevLett.96.075502
  • Osovski S, Rittel S, Venkert A. The respective influence of microstructural and thermal softening on adiabatic shear localization. Mech Mater. 2013;56:11–22. doi: 10.1016/j.mechmat.2012.09.008
  • Shi Y, Falk ML. Strain localization and percolation of stable structure in amorphous solids. Phys Rev Lett. 2005;95(9):095502. doi: 10.1103/PhysRevLett.95.095502
  • Liu Y, Liu C, Wang W, Inoue A, Sakurai T, Chen M. Thermodynamic origins of shear band formation and the universal scaling law of metallic glass strength. Phys Rev Lett. 2009;103(6):065504. doi: 10.1103/PhysRevLett.103.065504
  • Osovski S, Rittel D. Microstructural heterogeneity and dynamic shear localization. Appl Phys Lett. 2012;101(21):211901. doi: 10.1063/1.4767654
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys. 1995;117(1): 1–19. doi: 10.1006/jcph.1995.1039
  • Liu X-Y, Adams JB. Grain-boundary segregation in Al–10%Mg alloys at hot working temperatures. Acta Mat. 1998;46(10):3467–3476. doi: 10.1016/S1359-6454(98)00038-X
  • Steinhardt PJ, Nelson DR, Ronchetti M. Bond-orientational order in liquids and glasses. Phys Rev B. 1983;28(2):784–805. doi: 10.1103/PhysRevB.28.784
  • Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng. 2012;20(4):045021. doi: 10.1088/0965-0393/20/4/045021
  • Wendy XG, Loynachan CN, Wu Z, Zhang Y-W, Srolovitz DJ, Greer JR. Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Lett. 2012;12(12):6385–6392. doi: 10.1021/nl3036993
  • Devincre B, Hoc T, Kubin L. Dislocation mean free paths and strain hardening of crystals. Science. 2008;320(5884):1745–1748. doi: 10.1126/science.1156101
  • Landau P, Mordehai D, Venkert A, Makov G. Universal strain–temperature dependence of dislocation structures at the nanoscale. Scripta Mater. 2012;66(3–4):135–138. doi: 10.1016/j.scriptamat.2011.10.012
  • He G, Eckert J, Loeser W, Schultz L. Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nature Mater. 2003;2:33–37. doi: 10.1038/nmat792