1,197
Views
5
CrossRef citations to date
0
Altmetric
Original Reports

Temperature-Induced Short-Range Order Changes in Co67B33 Glassy Thin Films and Elastic Limit Implications

, , , , &
Pages 82-87 | Received 30 Jul 2014, Accepted 03 Sep 2014, Published online: 25 Sep 2014

References

  • Kaban I, Jovari P, Stoica M, Eckert J, Hoyer W, Beuneu B. Topological and chemical ordering in Co43Fe20Ta5.5B31.5 metallic glass. Phys Rev B. 2009;79:212201. doi: 10.1103/PhysRevB.79.212201
  • Inoue A, Shen B, Takeuchi A. Developments and applications of bulk glassy alloys in late transition metal base system. Mater Trans. 2006;47:1275–1285. doi: 10.2320/matertrans.47.1275
  • Inoue A. Stabalization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279–306. doi: 10.1016/S1359-6454(99)00300-6
  • Inoue A, Shen BL, Koshiba H, Kato H, Yavari AR. Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Mater. 2004;52:1631–1637. doi: 10.1016/j.actamat.2003.12.008
  • Ishida M, Takeda H, Watanabe D, Amiya K, Nishiyama N, Kita K, Saotome Y, Inoue A. Fillability and imprintability of high-strength Ni-based bulk metallic glass prepared by the precision die-casting technique. Mater Trans. 2004;45:1239–1244. doi: 10.2320/matertrans.45.1239
  • Lu J, Ravichandran G, Johnson WL. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 2003;51:3429–3443. doi: 10.1016/S1359-6454(03)00164-2
  • Shao Z, Gopinadhan M, Kumar G, Mukherjee S, Liu Y, O'Hern CS, Schroers J, Osuji CO. Size-dependent viscosity in the super-cooled liquid state of bulk metallic glass. Appl Phys Lett. 2013;102:221901. doi: 10.1063/1.4808342
  • Mattern N, Bednarcik J, Stoica M, Eckert J. Temperature dependence of the short-range order of Cu65Zr35 metallic glass. Intermetallics. 2013;32:51–56. doi: 10.1016/j.intermet.2012.08.024
  • Michalik S, Gamová J, Bednarcik J, Varga R. In situ structural investigation of amorphous and nanocrystalline Fe40Co38Mo4B18 microwires. J Alloy Compd. 2011;509:3409–3412. doi: 10.1016/j.jallcom.2010.12.098
  • Qin J, Gu T, Yang L. Structural and dynamical properties of Fe78Si9B13 alloy during rapid quenching by first principles molecular dynamic simulation. J Non-Cryst Solids. 2009;355:2333–2338. doi: 10.1016/j.jnoncrysol.2009.08.039
  • Xia JH, Cheng ZF, Shi DP, Xiao X. A molecular dynamics study of structural transition of Ti during the rapid quenching process. Physica B. 2012;407:2112–2118. doi: 10.1016/j.physb.2012.02.016
  • Lewis LJ, Vita AD. Structure and electronic properties of amorphous indium phosphide from first principles. Phys Rev B. 1998;57:1594–1606. doi: 10.1103/PhysRevB.57.1594
  • Wang J, Li R, Xiao R, Xu T, Li Y, Liu Z, Huang L, Hua N, Li G, Li Y, Zhang Y. Compressibility and hardness of Co-based bulk metallic glass: a combined experimental and density functional theory study. Appl Phys Lett. 2011;99:151911. doi: 10.1063/1.3647775
  • Hostert C, Music D, Bednarcik J, Keckes J, Kapaklis V, Hjörvarsson B, Schneider JM. Ab initio molecular dynamics model for density, elastic properties and short range order of Co-Fe-Ta-B metallic glass thin films. J Phys Condens Mat. 2011;23:475401. doi: 10.1088/0953-8984/23/47/475401
  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res. 1995;14:235–248. doi: 10.1080/08957959608201408
  • Egami T, Billinge SJL. Underneath the Bragg peaks: structural analysis of complex materials. Oxford: Elsevier; 2003.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:864–871. doi: 10.1103/PhysRev.136.B864
  • Ozaki T, Kino H. Efficient projector expansion for the ab initio LCAO method. Phys Rev B. 2005;72:045121. doi: 10.1103/PhysRevB.72.045121
  • Sholl DS. Density functional theory: a practical introduction. Hoboken, NJ: Wiley; 2009.
  • Ozaki T. Variationally optimized atomic orbitals for large-scale electronic structures. Phys Rev B. 2003;67:155108. doi: 10.1103/PhysRevB.67.155108
  • Finney JL. Random packings and the structure of simple liquids I. The geometry of random close packing. Proc R Soc Lon Ser A. 1970;319:479–493. doi: 10.1098/rspa.1970.0189
  • Park J, Shibutani Y. Common errors of applying the Voronoi tessellation technique to metallic glasses. Intermetallics. 2012;23:91–95. doi: 10.1016/j.intermet.2011.12.019
  • Music D, Hensling F, Pazur P, Bednarcik J, Hans M, Schnabel V, Hostert C, Schneider JM. Bonding and elastic properties of amorphous AlYB14. Solid State Commun. 2013;169:6–9. doi: 10.1016/j.ssc.2013.06.022
  • Taghvai AH, Stoica M, Khoshkhoo MS, Kaban I, Bednarcik J, Jóvári P, Janghorban K, Eckert J. DSC, XRD and TEM characterization of glassy Co40Fe22Ta8B30 alloy with very high thermal stability. Mater Lett. 2013;93:322–325. doi: 10.1016/j.matlet.2012.11.084
  • Waal BWVD. On the origin of second-peak splitting in the static structure factor of metallic glasses. J Non-Cryst Solids. 1995;189:118–128. doi: 10.1016/0022-3093(95)00208-1
  • Hui X, Lin DY, Chen XH, Wang WY, Wang Y, Shang SL, Liu ZK. Structural mechanism for ultrahigh-strength Co-based metallic glasses. Scripta Mater. 2013;68:257–260. doi: 10.1016/j.scriptamat.2012.10.030
  • Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M, Hajnal Z, Carlo AD, Suhai S. Atomistic simulations of complex materials: ground-state and excited-state properties. J Phys Condens Matter. 2002;14:3015–3047. doi: 10.1088/0953-8984/14/11/313
  • Zhang L, Cheng Y, Cao A, Xu J, Ma E. Bulk metallic glasses with large plasticity: composition design from the structural perspective. Acta Mater. 2009;57:1154–1164. doi: 10.1016/j.actamat.2008.11.002
  • Schuh CA, Lund AC, Nieh TG. New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 2004;52:5879–5891. doi: 10.1016/j.actamat.2004.09.005
  • Li L, Wang N, Yan F. Transient response in metallic glass deformation: a study based on shear transformation zone dynamics simulations. Scripta Mater. 2014;80:25–28. doi: 10.1016/j.scriptamat.2014.02.005
  • Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Mater Sci Eng, R. 2013;74:71–132. doi: 10.1016/j.mser.2013.04.001