1,876
Views
4
CrossRef citations to date
0
Altmetric
Original Reports

Strain-Induced Reverse Phase Transformation in Nanocrystalline Co-Ni Alloys

, , &
Pages 107-113 | Received 09 Jul 2014, Accepted 14 Nov 2014, Published online: 11 Dec 2014

References

  • Pineau A, Pelloux R. Influence of strain-induced martensitic transformations on fatigue crack growth rates in stainless steels. Metall Trans. 1974;5(5):1103–1112. doi: 10.1007/BF02644322
  • Otsuka K, Wayman CM. Shape memory materials. Cambridge: Cambridge University Press; 1998.
  • Gleiter H. Nanocrystalline materials. Prog Mater Sci. 1989;33(4):223–315. doi: 10.1016/0079-6425(89)90001-7
  • Suryanarayana C. Nanocrystalline materials. Int Mater Rev. 1995;40(2):41–64. doi: 10.1179/imr.1995.40.2.41
  • Lu K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Mater Sci Eng R. 1996;16(4):161–221. doi: 10.1016/0927-796X(95)00187-5
  • Huang JY, Wu YK, Ye HQ, Lu K. Allotropic transformation of cobalt induced by ball milling. Nanostruct Mater. 1995;6(5):723–726. doi: 10.1016/0965-9773(95)00160-3
  • Sort J, Nogués J, Suriñach S, Baró MD. Microstructural aspects of the hcp-fcc allotropic phase transformation induced in cobalt by ball milling. Philos Mag. 2003;83(4):439–455. doi: 10.1080/0141861021000047159
  • Wu X, Tao N, Hong Y, Liu G, Xu B, Lu J, Lu K. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Mater. 2005;53(3):681–691. doi: 10.1016/j.actamat.2004.10.021
  • Wu X, Tao N, Hong Y, Lu J, Lu K. γ→ martensite transformation and twinning deformation in fcc cobalt during surface mechanical attrition treatment. Scr Mater. 2005;52(7):547–551. doi: 10.1016/j.scriptamat.2004.12.004
  • Edalati K, Toh S, Arita M, Watanabe M, Horita Z. High-pressure torsion of pure cobalt: hcp-fcc phase transformations and twinning during severe plastic deformation. Appl Phys Lett. 2013;102(18):181902-1–181902-4. doi: 10.1063/1.4804273
  • Sort J, Zhilyaev A, Zielinska M, Nogués J, Surinach S, Thibault J, Baró MD. Microstructural effects and large microhardness in cobalt processed by high pressure torsion consolidation of ball milled powders. Acta Mater. 2003;51(20):6385–6393. doi: 10.1016/j.actamat.2003.08.006
  • Nishizawa T, Ishida K. The Co-Ni (Cobalt-Nickel) system. Bull Alloy Phase Diagr. 1983;4(4):390–395. doi: 10.1007/BF02868090
  • Takeuchi S, Honma T. Studies on the β→ transformation in Cobalt-Nickel alloys. I: Propagation process of the transformation. Sci Rep Res Inst Tohoku Univ. 1957;A9:492–507.
  • Postnikov VS, Belko VN, Sharshakov IM. Temperature-dependence of internal friction in Cobalt-Nickel alloys. Fiz Met Metalloved. 1968;26(6):1051–1056.
  • Remy L, Pineau A. Twinning and strain-induced fcc → hcp transformation on the mechanical properties of Co-Ni-Cr-Mo alloys. Mater Sci Eng. 1976;26(1):123–132. doi: 10.1016/0025-5416(76)90234-2
  • Li JY, Ni C, Liu JY, Jin MJ, Li W, Jin XJ. Extraordinary stability of nano-twinned structure formed during phase transformation coupled with grain growth in electrodeposited Co-Ni alloys. Mater Chem Phys. 2014;148(3):1202–1211. doi: 10.1016/j.matchemphys.2014.09.048
  • Li J, Liu J, Jin M, Jin X. Grain size dependent phase stability of pulse electrodeposited nano-grained Co–Ni films. J Alloys Compd. 2013;577:S151–S154. doi: 10.1016/j.jallcom.2012.02.002
  • Zhang K, Weertman JR, Eastman JA. Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl Phys Lett. 2005;87(6):061921-1–061921-3.
  • Jin M, Minor AM, Stach EA, Morris Jr JW. Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 2004;52(18):5381–5387. doi: 10.1016/j.actamat.2004.07.044
  • Wen H, Zhao Y, Li Y, Ertorer O, Nesterov KM, Islamgaliev RK, Valievb RZ, Lavernia EJ. High-pressure torsion-induced grain growth and detwinning in cryomilled Cu powders. Philos Mag. 2010;90(34):4541–4550. doi: 10.1080/14786435.2010.514579
  • Liao XZ, Kilmametov AR, Valiev RZ, Gao H, Li X, Mukherjee AK, Bingert JF, Zhu YT. High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl Phys Lett. 2006;88(2):021909-1–021909-3. doi: 10.1063/1.2159088
  • Zhang Y, Sharon JA, Hu GL, Ramesh KT, Hemker KJ. Stress-driven grain growth in ultrafine grained Mg thin film. Scr Mater. 2013;68(6):424–427. doi: 10.1016/j.scriptamat.2012.11.013
  • Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 2006;54(8):2253–2263. doi: 10.1016/j.actamat.2006.01.023
  • Fan GJ, Fu LF, Qiao DC, Choo H, Liaw PK, Browning ND. Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation. Scr Mater. 2006;54(12):2137–2141. doi: 10.1016/j.scriptamat.2006.02.041
  • El-Sherik AM, Erb U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. J Mater Sci. 1995;30(22):5743–5749. doi: 10.1007/BF00356715
  • Kobler A, Lohmiller J, Schäfer J, Kerber M, Castrup A, Kashiwar A, Horst H, Kübel C. Deformation-induced grain growth and twinning in nanocrystalline palladium thin films. Beilstein J Nanotechnol. 2013;4(1):554–566. doi: 10.3762/bjnano.4.64
  • Lohmiller J, Woo NC, Spolenak R. Microstructure–property relationship in highly ductile Au–Cu thin films for flexible electronics. Mater Sci Eng A. 2010;527(29):7731–7740. doi: 10.1016/j.msea.2010.08.043
  • Hommel M, Kraft O. Deformation behavior of thin copper films on deformable substrates. Acta Mater. 2001;49(19):3935–3947. doi: 10.1016/S1359-6454(01)00293-2
  • Wu XL, Jiang P, Chen L, Zhang JF, Yuan FP, Zhu YT. Synergetic strengthening by gradient structure. Mater Res Letts. 2014;2(4):185–191. doi: 10.1080/21663831.2014.935821
  • Taylor A. Latice parameters of binary nickel cobalt alloys. J Inst Met. 1950;77:585–594.
  • Betteridge W. The properties of metallic cobalt. Prog Mater Sci. 1980;24:51–142. doi: 10.1016/0079-6425(79)90004-5
  • Hsu TY. Thermodynamic properties of β(γ)→ martensitic transformation. Acta Metall Sin. 1980;16:430–434.
  • Liu Y, Yang H, Tan G, Miyazaki S, Jiang B, Liu Y. Stress-induced FCC ↔ HCP martensitic transformation in CoNi. J Alloys Compd. 2004;368(1):157. doi: 10.1016/j.jallcom.2003.07.015
  • Wang N, Wang Z, Aust KT, Erb U. Isokinetic analysis of nanocrystalline nickel electrodeposits upon annealing. Acta Mater. 1997;45(4):1655–1669. doi: 10.1016/S1359-6454(96)00254-6
  • Mishra A, Kad BK, Gregori F, Meyers MA. Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis. Acta Mater. 2007;55(1):13–28. doi: 10.1016/j.actamat.2006.07.008
  • Barin I. Thermochemical data of pure substances. Weinheim: VCH; 1995.
  • Xavior MA, Adithan M. Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. J Mater Process Tech. 2009;209(2):900–909. doi: 10.1016/j.jmatprotec.2008.02.068
  • Ding X, Liu X. Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. J Mater Res. 1998;13(9):2556–2559. doi: 10.1557/JMR.1998.0356
  • Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K, Kainuma R. Abnormal grain growth induced by cyclic heat treatment. Science. 2013;341(6153):1500–1502. doi: 10.1126/science.1238017