2,194
Views
52
CrossRef citations to date
0
Altmetric
Report

Improved Fatigue Strengths of Nanocrystalline Cu and Cu–Al Alloys

, , &
Pages 135-141 | Received 31 Jan 2015, Accepted 10 Mar 2015, Published online: 09 Apr 2015

References

  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556. doi: 10.1016/j.pmatsci.2005.08.003
  • Zhu YT, Liao XZ. Nanostructured metals—retaining ductility. Nature Mater. 2004;3:351–352. doi: 10.1038/nmat1141
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324:349–352. doi: 10.1126/science.1159610
  • Fang TH, Li WL, Tao NR, Lu K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590. doi: 10.1126/science.1200177
  • Wu XL, Jiang P, Chen L, Zhang JF, Yuan FP, Zhu YT. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2:185–191. doi: 10.1080/21663831.2014.935821
  • Vinogradov A, Hashimoto, S. Fatigue of severely deformed metals. Adv Eng Mater. 2003;5:351–358. doi: 10.1002/adem.200310078
  • Mughrabi H, Höppel HW, Kautz M. Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scr Mater. 2004;51:807–812. doi: 10.1016/j.scriptamat.2004.05.012
  • Mughrabi H, Höppel HW. Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int J Fat. 2010;32:1413–1427. doi: 10.1016/j.ijfatigue.2009.10.007
  • Forrest PG. Fatigue of metals. Oxford: Pergamon Press; 1962.
  • Suresh S. Fatigue of materials. 2nd ed. Cambridge: Cambrige Univeristy Press; 1998.
  • Höppel HW, Zhou ZM, Mughrabi H, Valiev RZ. Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Phil Mag A. 2009;82:1781–1794. doi: 10.1080/01418610208235689
  • Wu SD, Wang ZG, Jiang CB, Li GY, Alexandrov IV, Valiev RZ. The formation of PSB-like shear bands in cyclically deformed ultrafine grained copper processed by ECAP. Scr Mater. 2003;48:1605–1609. doi: 10.1016/S1359-6462(03)00141-6
  • Goto M, Han SZ, Euh K, Kang JH, Kim SS, Kawagoishi N. Formation of a high-cycle fatigue fracture surface and a crack growth mechanism of ultrafine-grained copper with different stages of microstructural evolution. Acta Mater. 2010;58:6294–6305. doi: 10.1016/j.actamat.2010.07.051
  • Malekjani S, Hodgson PD, Cizek P, Hilditch TB. Cyclic deformation response of ultrafine pure Al. Acta Mater. 2011;59:5358–5367. doi: 10.1016/j.actamat.2011.05.013
  • Zhang ZJ, An XH, Zhang P, Yang MX, Yang G, Wu SD, Zhang ZF. Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu–Zn alloy processed by equal-channel angular pressing. Scr Mater. 2013;68:389–392. doi: 10.1016/j.scriptamat.2012.10.036
  • An XH, Wu SD, Wang ZG, Zhang ZF. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu–Al alloys. Acta Mater. 2014;74:200–214. doi: 10.1016/j.actamat.2014.04.053
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9
  • An XH, Lin QY, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG. The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu–Al alloys processed by high-pressure torsion. Scr Mater. 2011;64:954–957. doi: 10.1016/j.scriptamat.2011.01.041
  • Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53:893–979. doi: 10.1016/j.pmatsci.2008.03.002
  • Pang JC, Li SX, Wang ZG, Zhang ZF. Relationship between tensile and fatigue strengths of metallic materials. Mater Sci Eng A. 2013;564:331–341. doi: 10.1016/j.msea.2012.11.103
  • Qu S, An XH, Yang HJ, Huang CX, Yang G, Zang QS, Wang ZG, Wu SD, Zhang ZF. Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 2009;57:1586–1601. doi: 10.1016/j.actamat.2008.12.002
  • Hohenwarter A, Pippan R. Fracture toughness evaluation of ultrafine-grained nickel. Scr Mater. 2011;64:982–985. doi: 10.1016/j.scriptamat.2011.02.007
  • Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG. Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater. 2012;60:3190–3198. doi: 10.1016/j.actamat.2012.02.027
  • Balogh L, Ungár T, Zhao Y, Zhu YT, Horita Z, Xu C, Langdon TG. Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys. Acta Mater. 2008;56:809–820. doi: 10.1016/j.actamat.2007.10.053
  • An XH, Lin QY, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG. Significance of stacking fault energy on microstructural evolution in Cu and Cu–Al alloys processed by high-pressure torsion. Phil Mag. 2011;91:3307–3326. doi: 10.1080/14786435.2011.577757
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57:1–62. doi: 10.1016/j.pmatsci.2011.05.001
  • Zhang Y, Tao NR, Lu K. Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nanostructured Cu-Al alloys subjected to plastic deformation. Acta Mater. 2011;59:6048–6058. doi: 10.1016/j.actamat.2011.06.013
  • Zhao YH, Liao XZ, Horita Z, Langdon TG, Zhu, YT. Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys. Mater Sci Eng A. 2008;493:123–129. doi: 10.1016/j.msea.2007.11.074
  • Zhang P, An XH, Zhang ZJ, Wu SD, Li SX, Zhang ZF, Figueiredo RB, Gao N, Langdon TG. Optimizing strength and ductility of Cu–Zn alloys through severe plastic deformation. Scr Mater. 2012;67:871–874. doi: 10.1016/j.scriptamat.2012.07.040
  • Kun F, Carmona HA, Andrade JS Jr, Herrmann HJ. Universality behind Basquin's law of fatigue. Phys Rev Lett. 2008;100: 094301-1–3. doi: 10.1103/PhysRevLett.100.094301
  • Berbenni S, Bhasker PB, Cherkaoui M. A micromechan ics-based model for shear-coupled grain boundary migration in bicrystals. Int J Plasticity. 2013;44:68–94. doi: 10.1016/j.ijplas.2012.11.011
  • Brandl C, Germann TC, Perez-Bergquist AG, Cerreta EK. Grain boundary motion under dynamic loading: mechanism and large-scale molecular dynamics simulations. Mater Res Lett. 2013;1:220–227. doi: 10.1080/21663831.2013.830993
  • Anderoglu O, Misra A, Wang J, Hoagland RG, Hirth JP, Zhang X. Plastic flow stability of nanotwinned Cu foils. Int J Plast. 2010;26:875–886. doi: 10.1016/j.ijplas.2009.11.003
  • Pan QS, Lu QH, Lu L. Fatigue behavior of columnar-grained Cu with preferentially oriented nanoscale twins. Acta Mater. 2013;61:1383–1393. doi: 10.1016/j.actamat.2012.11.015
  • Sangid MD, Maier HJ, Sehitoglu H. The role of grain boundaries on fatigue crack initiation—an energy approach. Int J Plast. 2011;27:801–821. doi: 10.1016/j.ijplas.2010.09.009
  • Li P, Li SX, Wang ZG, Zhang ZF. Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals. Prog Mater Sci. 2011;56:328–377. doi: 10.1016/j.pmatsci.2010.12.001
  • Khatibi G, Horky J, Weiss B, Zehetbauer MJ. High cycle fatigue behaviour of copper deformed by high pressure torsion. Int J Fat. 2010;32:269–278. doi: 10.1016/j.ijfatigue.2009.06.017
  • Huang JY, Zhu YT, Jiang H, Lowe, TC. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 2001;49:1497–1505. doi: 10.1016/S1359-6454(01)00069-6
  • Tucker, GJ, McDowell, DL. Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations. Int J Plast. 2011;27:841–857. doi: 10.1016/j.ijplas.2010.09.011
  • Kunz L, Lukàš P, Svoboda M. Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper. Mater Sci Eng A. 2006;424:97–104. doi: 10.1016/j.msea.2006.02.029
  • Li JC. Mechanical grain growth in nanocrystalline copper. Phys Rev Lett. 2006;96: 215506-1–4.
  • An XH, Lin QY, Wu SD, Zhang ZF. Mechanically driven annealing twinning induced by cyclic deformation in nanocrystalline Cu. Scr Mater. 2013;68:988–991. doi: 10.1016/j.scriptamat.2013.02.053
  • Schiøtz J. Strain-induced coarsening in nanocrystalline metals under cyclic deformation. Mater Sci Eng A. 2004;375–377:975–979. doi: 10.1016/j.msea.2003.10.175
  • Cheng S, Zhao Y, Wang Y, Li Y, Wang XL, Liaw PK, Lavernia EJ. Structure modulation driven by cyclic deformation in nanocrystalline NiFe. Phys Rev Lett. 2010;104: 255501-1–4.
  • Farkas D, Willemann M, Hyde B. Atomistic mechanisms of fatigue in nanocrystalline metals. Phys Rev Lett. 2005;94: 165502-1–4. doi: 10.1103/PhysRevLett.94.165502
  • Ueno H, Kakihata K, Kaneko Y, Hashimoto S, Vinogradov A. Enhanced fatigue properties of nanostructured austenitic SUS 316 L stainless steel. Acta Mater. 2011;59:7060–7069. doi: 10.1016/j.actamat.2011.07.061
  • Ovid'ko IA, Sheinerman AG. Generation of nanocracks at deformation Twins in nanomaterials. Mater Res Lett. 2013;1:168–173. doi: 10.1080/21663831.2013.814091