2,430
Views
36
CrossRef citations to date
0
Altmetric
Original Report

The role of Ta on twinnability in nanocrystalline Cu–Ta alloys

, , , &
Pages 48-54 | Received 23 Apr 2016, Published online: 20 Jul 2016

References

  • Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48:1–29. doi: 10.1016/S1359-6454(99)00285-2
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556. doi: 10.1016/j.pmatsci.2005.08.003
  • Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007;55:4041–4065. doi: 10.1016/j.actamat.2007.01.038
  • Wei Q, Schuster BE, Mathaudhu SN, et al. Dynamic behaviors of body-centered cubic metals with ultrafine grained and nanocrystalline microstructures. Mater Sci Eng A. 2008;493:58–64. doi: 10.1016/j.msea.2007.05.126
  • Hall EO. Variation of hardness of metals with grain size. Nature. 1954;173:948–949. doi: 10.1038/173948b0
  • Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst Lond. 1953;173:25–28.
  • Schiøtz J, Di Tolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature. 1998;391:561–563. doi: 10.1038/35328
  • Chokshi AH, Rosen A, Karch J, Gleiter H. On the validity of the hall-petch relationship in nanocrystalline materials. Scr Metall. 1989;23:1679–1683. doi: 10.1016/0036-9748(89)90342-6
  • Hornbuckle BC, Rojhirunsakool T, Rajagopalan M, et al. Effect of Ta solute concentration on the microstructural evolution in immiscible Cu–Ta Alloys. JOM. 2015;67:2802–2809. doi: 10.1007/s11837-015-1643-x
  • Sherby OD, Wadsworth J. Superplasticity—Recent advances and future directions. Prog Mater Sci. 1989;33:169–221. doi: 10.1016/0079-6425(89)90004-2
  • Bhatia MA, Mathaudhu SN, Solanki KN. Atomic-scale investigation of creep behavior in nanocrystalline Mg and Mg–Y alloys. Acta Mater. 2015;99:382–391. doi: 10.1016/j.actamat.2015.07.068
  • Tschopp MA, Murdoch HA, Kecskes LJ, Darling KA. “Bulk” nanocrystalline metals: review of the current state of the art and future opportunities for copper and copper alloys. JOM. 2014;66:1000–1019. doi: 10.1007/s11837-014-0978-z
  • Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X. Deformation twinning in nanocrystalline aluminum. Science. 2003;300:1275–1277. doi: 10.1126/science.1083727
  • Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV. Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl Phys Lett. 2004;84:592–594. doi: 10.1063/1.1644051
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57:1–62. doi: 10.1016/j.pmatsci.2011.05.001
  • Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003;51:5743–5774. doi: 10.1016/j.actamat.2003.08.032
  • Ovid’ko IA. Review on the fracture processes in nanocrystalline materials. J Mater Sci. 2007;42:1694–1708. doi: 10.1007/s10853-006-0968-9
  • Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 2006;54:2253–2263. doi: 10.1016/j.actamat.2006.01.023
  • Malow TR, Koch CC. Grain growth in nanocrystalline iron prepared by mechanical attrition. Acta Mater. 1997;45:2177–2186. doi: 10.1016/S1359-6454(96)00300-X
  • Hibbard GD, McCrea JL, Palumbo G, Aust KT, Erb U. An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni. Scr Mater. 2002;47:83–87. doi: 10.1016/S1359-6462(02)00098-2
  • Darling KA, Tschopp MA, Guduru RK, Yin WH, Wei Q, Kecskes LJ. Microstructure and mechanical properties of bulk nanostructured Cu–Ta alloys consolidated by equal channel angular extrusion. Acta Mater. 2014;76:168–185. doi: 10.1016/j.actamat.2014.04.074
  • Darling KA, Huskins EL, Schuster BE, Wei Q, Kecskes LJ. Mechanical properties of a high strength Cu–Ta composite at elevated temperature. Mater Sci Eng A. 2015;638:322–328. doi: 10.1016/j.msea.2015.04.069
  • Cai T, Zhang ZJ, Zhang P, Yang JB, Zhang ZF. Competition between slip and twinning in face-centered cubic metals. J Appl Phys. 2014;116: 163512-1--163512-6.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Pun GP, Darling K, Kecskes L, Mishin Y. Angular-dependent interatomic potential for the Cu–Ta system and its application to structural stability of nano-crystalline alloys. Acta Mater. 2015;100:377–391. doi: 10.1016/j.actamat.2015.08.052
  • Rice JR. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids. 1992;40:239–271. doi: 10.1016/S0022-5096(05)80012-2
  • Subramanian PR, Laughlin DE. The Cu–Ta (Copper–Tantalum) system. Bull Alloy Phase Diagram. 1989;10:652–655. doi: 10.1007/BF02877637
  • Darling KA, Tschopp MA, VanLeeuwen BK, Atwater MA, Liu ZK. Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps. Comput Mater Sci. 2014;84:255–266. doi: 10.1016/j.commatsci.2013.10.018
  • Tadmor EB, Hai S. A Peierls criterion for the onset of deformation twinning at a crack tip. J Mech Phys Solids. 2003;51:765–793. doi: 10.1016/S0022-5096(03)00005-X
  • Schiøtz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper. Science. 2003;301:1357–1359. doi: 10.1126/science.1086636
  • Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Math Phys Eng Sci. [Internet]. The Royal Society; 1957 [cited 2015 Dec 15]. p. 376–396. Available from: http://rspa.royalsocietypublishing.org/content/royprsa/241/1226/376.full.pdf.
  • Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci. 1995;39:1–157. doi: 10.1016/0079-6425(94)00007-7
  • Reid CN. The association of twinning and fracture in bcc metals. Metall Trans A. 1981;12:371–377. doi: 10.1007/BF02648534
  • Asaro RJ, Suresh S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 2005;53:3369–3382. doi: 10.1016/j.actamat.2005.03.047