2,473
Views
25
CrossRef citations to date
0
Altmetric
Original Report

Experimental and DFT investigation of (Cr,Ti)3AlC2 MAX phases stability

, &
Pages 144-157 | Received 16 May 2016, Accepted 06 Aug 2016, Published online: 22 Sep 2016

References

  • Barsoum MW. MAX phases: properties of machinable ternary carbides and nitrides. Weinheim (Germany): Wiley-VCH; 2013.
  • Naguib M, Bentzel GW, Shah J, et al. New solid solution MAX phases: (Ti0.5,V0.5)3AlC2, (Nb0.5,V0.5)2AlC, (Nb0.5,V0.5)4AlC3 and (Nb0.8,Zr0.2)2AlC. Mater Res Lett. 2014;2:233–240. doi: 10.1080/21663831.2014.932858
  • Horlait D, Grasso S, Chroneos A, et al. Attempts to synthesise quaternary MAX phases (Zr,M)2AlC and Zr2(Al,A)C as a way to approach Zr2AlC. Mater Res Lett. 2016;4:137–144. doi: 10.1080/21663831.2016.1143053
  • Mockute A, Lu J, Moon EJ, et al. Solid solubility and magnetism upon Mn incorporation in bulk Cr2AlC and Cr2GaC MAX phases. Mater Res Lett. 2015;3:16–22. doi: 10.1080/21663831.2014.944676
  • Meng FL, Zhou YC, Wang J. Strengthening of Ti2AlC by substituting Ti with V. Scripta Mater. 2005;53:1369–1372. doi: 10.1016/j.scriptamat.2005.08.030
  • Barsoum MW, Salama I, El-Raghy T, et al. Thermal and electrical properties of Nb2AlC, (Ti,Nb)2AlC and Ti2AlC. Metall Mater Trans A. 2002;33:2775–2779. doi: 10.1007/s11661-002-0262-7
  • Rosen J, Dahlqvist M, Simak SI, et al. Oxygen incorporation in Ti2AlC: tuning of anisotropic conductivity. Appl Phys Lett. 2010;97:073103. doi: 10.1063/1.3472280
  • Radovic M, Barsoum MW, Ganguly A, et al. On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2,Ti3Si0.5Al0.5C2 and Ti2AlC in the 300–1573K temperature range. Acta Mater. 2006;54:2757–2767. doi: 10.1016/j.actamat.2006.02.019
  • Cabioc’h T, Eklund P, Mauchamp V, et al. Tailoring of the thermal expansions of the MAX phases in the Cr2(Al1−x,Gex)C2 system. J Eur Ceram Soc. 2013;33:897–904. doi: 10.1016/j.jeurceramsoc.2012.10.008
  • Tao QZ, Hu CF, Lin S, et al. Coexistence of ferromagnetic and a re-entrant cluster glass state in the layered quaternary (Cr1−xMnxGeC). Mater Res Lett. 2014;2:192–198. doi: 10.1080/21663831.2014.909542
  • Liu Z, Waki T, Tabata Y, et al. Mn-doping-induced itinerant-electron ferromagnetism in Cr2GeC. Phys Rev B. 2014;89:054435. doi: 10.1103/PhysRevB.89.054435
  • Lin S, Huang Y, Zu L, et al. Alloying effects on structural, magnetic, and electrical/thermal transport properties in MAX-phase Cr2-xMxGeC (M =Ti, V, Mn, Fe, and Mo). J Alloy Compd. 2016:680:452–461. doi: 10.1016/j.jallcom.2016.04.197
  • Lin S, Tong P, Wang BS, et al. Magnetic and electric/thermal transport properties of Mn-doped Mn+1AXn phase compounds Cr2−xMnxGaC (0 ≤ x ≤ 1). J Appl Phys. 2013;113:053502. doi: 10.1063/1.4789954
  • Salikhov R, Semisalova AS, Petruhins A, et al. Magnetic Anisotropy in the (Cr0.5Mn0.5)2GaC MAX Phase. Mater Res Lett. 2015;3:156–160. doi: 10.1080/21663831.2015.1036324
  • Petruhins A, Ingason AS, Lu J, et al. Synthesis and characterization of magnetic (Cr0.5Mn0.5)2GaC thin films. J Mater Sci. 2015;50(13):4495–4502. doi: 10.1007/s10853-015-8999-8
  • Meshkian R, Ingason AS, Arnalds UB, et al. A magnetic atomic laminate from thin film synthesis: (Mo0.5Mn0.5)2GaC. APL Mater. 2015;076102:2–7.
  • Horlait D, Middleburgh SC, Chroneos A, et al. Synthesis and DFT investigation of new bismuth-containing MAX phases. Sci Reports. 2016;6:18829. doi: 10.1038/srep18829
  • Aryal S, Sakidja R, Barsoum MW, et al. A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Physica Status Solidi. 2014;251:1480–1497. doi: 10.1002/pssb.201451226
  • Dahlqvist M, Rosen J. Order and disorder in quaternary atomic laminates from first-principles calculations. Phys Chem Chem Phys. 2015;17:31810–31821. doi: 10.1039/C5CP06021D
  • Dahlqvist M, Alling B, Rosen J. Stability trends of MAX phases from first principles. Phys Rev B. 2010;81:220102. doi: 10.1103/PhysRevB.81.220102
  • Keast VJ, Harris S, Smith DK. Prediction of the stability of the Mn+1AXn phases from first principles. Phys Rev B. 2009;80(21):214113. doi: 10.1103/PhysRevB.80.214113
  • Liu Z, Zheng L, Sun L, et al. (Cr2/3Ti1/3)3AlC2 and (Cr5/8Ti3/8)4AlC3: New MAX-phase Compounds in Ti–Cr–Al–C System. J Am Ceram Soc. 2014;97:67–69. doi: 10.1111/jace.12731
  • Horlait D, Grasso S, Al Nasiri N, et al. Synthesis and oxidation testing of MAX phases composites in the Cr-Ti-Al-C quaternary system. J Am Ceram Soc. 2016;99:682–690. doi: 10.1111/jace.13962
  • Liu Z, Wu E, Wang J, et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase. Acta Mater. 2014;73:186–193. doi: 10.1016/j.actamat.2014.04.006
  • Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Zeitschrift für Krist. 2005;220:567–570.
  • Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter. 2002;14:2717–2744. doi: 10.1088/0953-8984/14/11/301
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41(11):7892–7895. doi: 10.1103/PhysRevB.41.7892
  • Varvenne C, Bruneval F, Marinica M-C, et al. Point defect modeling in materials: coupling ab initio and elasticity approaches. Phys Rev B. 2013;88(13):134102. doi: 10.1103/PhysRevB.88.134102
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188–5192. doi: 10.1103/PhysRevB.13.5188
  • Morris AJ, Nicholls RJ, Pickard CJ, et al. OptaDOS: A tool for obtaining density of states, core-level and optical spectra from electronic structure codes. Comput Phys Commun. 2014;185:1477–1485. doi: 10.1016/j.cpc.2014.02.013
  • Yates JR, Wang X, Vanderbilt D, et al. Spectral and Fermi surface properties from Wannier interpolation. Phys Rev B. 2007;75:1–11. doi: 10.1103/PhysRevB.75.195121
  • Schuster JC, Nowotny H, Vaccaro C. The ternary systems: Cr–Al–C, V–Al–C, and Ti–Al–C and the behavior of H-Phases (M2AlC). J Solid State Chem. 1980;32(2):213–219. doi: 10.1016/0022-4596(80)90569-1
  • Pietzka MA, Schuster JC. Summary of constitutional data on the Al–Ti–C system. J Phase Equilib. 1994;15:392–400. doi: 10.1007/BF02647559
  • Tzenov NV, Barsoum MV. Synthesis and characterization of Ti3AlC2. J Am Ceram Soc. 2000;83(4):825–832. doi: 10.1111/j.1151-2916.2000.tb01281.x
  • Zhang H, Wu X, Nickel KG, et al. High-pressure powder X-ray diffraction experiments and ab initio calculation of Ti3AlC2. J Appl Phys. 2009;106:013519. doi: 10.1063/1.3159035
  • Zhou YC, Chen JX, Wang JY. Mechanism for the Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1-xSixC2 solid solutions. Acta Mater. 2006;54(5):1317–1322. doi: 10.1016/j.actamat.2005.10.057
  • Bei GP, Gauthier-Brunet V, Tromas C, et al. Synthesis, characterization, and intrinsic hardness of layered nanolaminate Ti3AlC2 and Ti3Al0.8Sn0.2C2 solid solution. J Am Ceram Soc. 2012;95(1):102–107. doi: 10.1111/j.1551-2916.2011.04846.x
  • Caspi EN, Chartier P, Porcher F, et al. Ordering of (Cr,V) layers in nanolamellar (Cr0.5V0.5)n+1AlCn compounds. Mater Res Lett. 2015;3(2):100–106. doi: 10.1080/21663831.2014.975294
  • Kröger FA, Vink HJ. Relations between the concentrations of imperfections in solids. J Phys Chem Solids. 1958;5:208–223. doi: 10.1016/0022-3697(58)90069-6
  • Burr PA, Wenman MR, Gault B, et al. From solid solution to cluster formation of Fe and Cr in α-Zr. J Nucl Mater. 2015;467:320–331. doi: 10.1016/j.jnucmat.2015.10.001
  • Buchholt K, Eklund P, Jensen J, et al. Growth and characterization of epitaxial Ti3GeC2 thin films on 4H-SiC(0001). J Cryst Growth. 2012;343:133–137. doi: 10.1016/j.jcrysgro.2012.01.020
  • Salama I, El-Raghy T, Barsoum MW. Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC. J Alloys Compd. 2002;347:271–278. doi: 10.1016/S0925-8388(02)00756-9
  • Rawn CJ, Barsoum MW, El-Raghy T, et al. Structure of Ti4AlN3—a layered Mn+1AXn nitride. Mater Res Bull. 2000;35:1785–1796. doi: 10.1016/S0025-5408(00)00383-4
  • Barsoum MW, Farber L, Levin I, Procipio A, El-Raghy T, Berner A. High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited. J Am Ceram Soc. 1999;82:2545–2547. doi: 10.1111/j.1151-2916.1999.tb02117.x
  • Etzkorn J, Ade M, Hillebrecht H. V2AlC, V4AlC3-x (x ≈ 0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure. Inorg Chem. 2007;46(18):7646–7653. doi: 10.1021/ic700382y
  • Zhang H, Hu T, Wang X, et al. Discovery of carbon-vacancy ordering in Nb4AlC3–x under the guidance of first-principles calculations. Sci Rep. 2015;5(14192):1–10.
  • Music D, Ahuja R, Schneider JM. Theoretical study of nitrogen vacancies in Ti4AlN3. Appl Phys Lett. 2005;86:031911. doi: 10.1063/1.1854744
  • Zhang Z, Jin H, Pan J, et al. Origin of Al deficient Ti2AlN and pathways of vacancy-assisted diffusion. J Phys Chem C. 2015;119:16606–16613. doi: 10.1021/acs.jpcc.5b03249
  • Du YL, Sun ZM, Hashimoto H, et al. First-principles study of carbon vacancy in Ta4AlC3. Mater Trans. 2008;49:1934–1936. doi: 10.2320/matertrans.MAW200803
  • Liao T, Wang J, Zhou Y. Ab initio modeling of the formation and migration of monovacancies in Ti2AlC. Scripta Mater. 2008;59:854–857. doi: 10.1016/j.scriptamat.2008.06.044
  • Anasori B, Halim J, Lu J, et al. Mo2TiAlC2: A new ordered layered ternary carbide. Scripta Mater. 2015;101:5–7. doi: 10.1016/j.scriptamat.2014.12.024
  • Wang J, Liu Z, Zhang H, et al. Tailoring magnetic properties of MAX phases, a theoretical investigation of (Cr2Ti)AlC2 and Cr2AlC. J Am Ceram Soc. 2016;5:1–5.
  • Burr PA, Middleburgh SC, Grimes RW. Crystal structure, thermodynamics, magnetics and disorder properties of Be–Fe–Al intermetallics. J Alloys Compd. 2015;639:111–122. doi: 10.1016/j.jallcom.2015.03.101
  • Lide DR. Handbook of chemistry and physics. 90th ed. Boca Raton (FL): CRC Press; 2009.
  • Zhou Y, Meng F, Zhang J. New MAX-phase compounds in the V-Cr-Al-C system. J Am Ceram Soc. 2008;91(4):1357–1360. doi: 10.1111/j.1551-2916.2008.02279.x
  • Halim J, Chartier P, Basyuk T, et al. Structure and thermal expansion of (Crx,V1−x)n+1AlCn phases measured by X-ray diffraction. J Eur Ceram Soc. 2016, in press.