7,148
Views
193
CrossRef citations to date
0
Altmetric
Brief Overview

Strength and plasticity of nanolaminated materials

, , &
Pages 1-19 | Received 14 Jul 2016, Accepted 13 Aug 2016, Published online: 01 Sep 2016

References

  • Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48:1–29. doi: 10.1016/S1359-6454(99)00285-2
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556. doi: 10.1016/j.pmatsci.2005.08.003
  • Misra A, Hirth JP, Hoagland RG. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 2005;53:4817–4824. doi: 10.1016/j.actamat.2005.06.025
  • Launey ME, Munch E, Alsem DH, et al. A novel biomimetic approach to the design of high-performance ceramic–metal composites. J Roy Soc Int. 2010;7:741–753. doi: 10.1098/rsif.2009.0331
  • Misra A, Demkowicz MJ, Zhang X, et al. The radiation damage tolerance of ultra-high strength nanolayered composites. JOM. 2007;59(9):62–65. doi: 10.1007/s11837-007-0120-6
  • Nieh TG, Wadsworth J. High strength freestanding metal-amorphous multilayers. Scripta Mater. 2001;44:1825–1830. doi: 10.1016/S1359-6462(01)00801-6
  • Liu BX, Lai WS, Zhang ZJ. Solid-state crystal-to-amorphous transition in metal/metal multilayers and its thermodynamic and atomistic modelling. Adv Phys. 2001;50:367–429. doi: 10.1080/00018730110096112
  • Misra A, Verdier M, Lu YC, et al. Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites. Scripta Mater. 1998;39:555–560. doi: 10.1016/S1359-6462(98)00196-1
  • Johnson MT, Bloemen PJH, den Broeder FJA, et al. Magnetic anisotropy in metallic multilayers. Rep Prog Phys. 1996;59:1409–1458. doi: 10.1088/0034-4885/59/11/002
  • Mahan JE. Physical vapor deposition of thin films. 1st ed. New York: Wiley; 2012.
  • Was GS, Foecke T. Deformation and fracture in microlaminates. Thin Solid Films.1996;286:1–31. doi: 10.1016/S0040-6090(96)08905-5
  • Ross CA. Electrodeposited multilayer thin films. Annu Rev Mater Sci. 1994;24:159–188. doi: 10.1146/annurev.ms.24.080194.001111
  • Callister Jr WD. Materials science and engineering: an introduction. New York: Wiley; 1997. Chapter 9, Phase diagrams; p. 236–288.
  • Lütjering G, Williams JC. Titanium. New York: Springer; 2007. Chapter 2, Fundamental aspects; p. 15–52.
  • Carpenter JS, Vogel SC, Ledonne JE, et al. Bulk texture evolution of Cu–Nbnanolamellar composites during accumulative roll bonding. Acta Mater. 2012;60:1576–1586. doi: 10.1016/j.actamat.2011.11.045
  • Tsuji N, Saito Y, Lee SH, et al. ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv Eng Mater. 2003;5:338–344. doi: 10.1002/adem.200310077
  • Shen TD, Schwarz RB, Zhang X. Bulk nanostructured alloys prepared by flux melting and melt solidification. Appl Phys Lett. 2005;87: article no. 141906. doi: 10.1063/1.2056610
  • Wang J, Beyerlein IJ, Mara NA, et al. Interface-facilitated deformation twinning in copper within submicron Ag–Cu multilayered composites. Scripta Mater. 2011;64:1083–1086. doi: 10.1016/j.scriptamat.2011.02.025
  • Li N, Wang J, Misra A, et al. Direct observations of confined layer slip in Cu/Nb multilayers. Microsc Microan. 2012;18:1155–1162. doi: 10.1017/S143192761200133X
  • Mara NA, Bhattacharyya D, Dickerson P, et al. Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl Phys Lett. 2008;92: article no. 231901. doi: 10.1063/1.2938921
  • Lee SB, Ledonne JE, Lim SCV, et al. The heterophase interface character distribution of physical vapor-deposited and accumulative roll-bonded Cu–Nb multilayer composites. Acta Mater. 2012;60:1747–1761. doi: 10.1016/j.actamat.2011.12.007
  • Zheng SJ, Beyerlein IJ, Carpenter JS, et al. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun. 2013;4: article no. 1696. doi: 10.1038/ncomms2651
  • Carpenter JS, Zheng SJ, Zhang RF, et al. Thermal stability of Cu–Nbnanolamellar composites fabricated via accumulative roll bonding. Philos Mag. 2013;93:718–735. doi: 10.1080/14786435.2012.731527
  • Misra A, Hoagland RG, Kung K. Thermal stability of self-supported nanolayered Cu/Nb films. Philos Mag. 2004;84:1021–1028. doi: 10.1080/14786430310001659480
  • Anderson PM, Bingert JF, Misra A, et al. Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater. 2003;51:6059–6075. doi: 10.1016/S1359-6454(03)00428-2
  • Demkowicz MJ, Hoagland RG, Hirth JP. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys Rev Lett. 2008;100: article no. 136102. doi: 10.1103/PhysRevLett.100.136102
  • Wang J, Hoagland RG, Hirth JP, et al. Atomistic modeling of the interaction of glide dislocations with ‘weak’ interfaces. Acta Mater. 2008;56:5685–5693. doi: 10.1016/j.actamat.2008.07.041
  • Wang J, Misra A. An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci. 2011;15:20–28. doi: 10.1016/j.cossms.2010.09.002
  • Hoagland RG, Mitchell TE, Hirth JP, et al. On the strengthening effects of interfaces in multilayer fcc–metallic composites. Philos Mag. 2002;82: 643–664.
  • Mckeown J, Misra A, Kung H, et al. Microstructures and strength of nanoscale Cu–Ag multilayers. Scripta Mater. 2002;46:593–598. doi: 10.1016/S1359-6462(02)00036-2
  • Han WZ, Cerreta EK, Mara NA, et al. Deformation and failure of shocked bulk Cu–Nb nanolaminates. Acta Mater. 2014;63:150–161. doi: 10.1016/j.actamat.2013.10.019
  • Mara NA, Bhattacharyya D, Hoagland RG. Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scripta Mater. 2008;58:874–877. doi: 10.1016/j.scriptamat.2008.01.005
  • Zhang JY, Zhang X, Wang RH, et al. Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Mater. 2011;59:7368–7379. doi: 10.1016/j.actamat.2011.08.016
  • Zhang RF, Germann TC, Liu XY, et al. Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater. 2014;79:74–83. doi: 10.1016/j.actamat.2014.07.016
  • Hochebauer T, Misra A, Hatter K. Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J Appl Phys. 2005;98: article no. 123516. doi: 10.1063/1.2149168
  • Misra A, Demkowicz MJ, Wang J. The multiscale modeling of plastic deformation in metallic nanolayered composites. JOM.2008;60:39–42. doi: 10.1007/s11837-008-0047-6
  • Anderson PM, Li C. Hall–Petch relations for multilayered materials. Nanostruct Mater.1995;5:349–362. doi: 10.1016/0965-9773(95)00250-I
  • Fiedman LH, Chrzan DC. Scaling theory of the Hall–Petch relation for multilayers. Phys Rev Lett. 1998;81:2715–2718. doi: 10.1103/PhysRevLett.81.2715
  • Huang HB, Spaepen F. Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 2000;48:3261–3269. doi: 10.1016/S1359-6454(00)00128-2
  • Marcinkowski MJ, Armstrong RW. Dislocation analysis of crack lamellae. J Appl Phys. 1972;43:2548–2554. doi: 10.1063/1.1661558
  • Pande CS, Masumura RA, Armstrong RW. Pile-up based Hall–Petch relation for nanoscale materials. Nanostruct Mater. 1993;3:323–331. doi: 10.1016/0965-9773(93)90159-9
  • Armstrong RW, Chou YT, Fisher RM, et al. The limiting grain size dependence of the strength of a polycrystalline aggregate. Philos Mag. 1966;14:943–951. doi: 10.1080/14786436608244765
  • Li JCM, Liu GCT. Circular dislocation pile-ups: I. Strength of ultra-fine polycrystalline aggregates. Philos Mag. 1967;15:1059–1063. doi: 10.1080/14786436708221653
  • Philips MA, Clemens BM, Nix WD. Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater. 2003;51:3137–3184.
  • Misra A, Hirth JP, Kung H. Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos Mag. 2002;82:2935–2951. doi: 10.1080/01418610208239626
  • Embury JD, Hirth JP. On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall Mater. 1995;42:2051–2056. doi: 10.1016/0956-7151(94)90030-2
  • Anderson PM, Foecke T, Hazzledine PM. Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 1999;24:27–33. doi: 10.1557/S0883769400051514
  • Freund LB. The driving force for glide of a threading dislocation in a strained epitaxial layer on a substrate. J Mech Phys Solids. 1990;38:657–679. doi: 10.1016/0022-5096(90)90027-2
  • Nix WD. Mechanical properties of thin films. Metall Trans A. 1989;20A:2217–2245. doi: 10.1007/BF02666659
  • Hoagland RG, Kurtz RJ, Henager CH. Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Mater. 2004;50:775–779. doi: 10.1016/j.scriptamat.2003.11.059
  • Rao SI, Hazzledine PM. Atomistic simulations of dislocation-interface interactions in the Cu–Ni multilayer system. Philos Mag. 2000;80:2011–2040. doi: 10.1080/01418610008212148
  • Henager CH, Kurtz RJ, Hoagland RG. Interactions of dislocations with disconnections in fcc metallic nanolayered materials. Philos Mag. 2004;84:2277–2303. doi: 10.1080/14786430410001678235
  • Wang J, Hoagland RG, Misra A. Mechanics of nanoscale metallic multilayers: from atomic-scale to micro-scale. Scripta Mater. 2009;60:1067–1072. doi: 10.1016/j.scriptamat.2008.11.035
  • Wang J, Hoagland RG, Hirth JP, et al. Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater. 2008;56:3109–3119. doi: 10.1016/j.actamat.2008.03.003
  • Demkowicz MJ, Wang J, Hoagland RG. Interfaces between dissimilar crystalline solids. In: HirthJP, editor. Dislocations in solids, vol. 14. Amsterdam: Elsevier; 2008. p. 141–207.
  • Derlet PM, Gumbsch P, Hoagland RG, et al. Atomistic simulations of dislocations in confined volumes. MRS Bull. 2009;34:184–189. doi: 10.1557/mrs2009.50
  • Liu XY, Hoagland RG, Wang J, et al. The influence of dilute heats of mixing on the atomic structures, defect energetics and mechanical properties of fcc–bcc interfaces. Acta Mater. 2010;58:4549–4557. doi: 10.1016/j.actamat.2010.05.008
  • Wang J, Hoagland RG, Misra A. Room-temperature dislocation climb in metallic interfaces. Appl Phys Lett. 2009;94: article no. 131910. doi: 10.1063/1.3111137
  • Beyerlein IJ, Mayeur JR, Zheng S, et al. Emergence of stable interfaces under extreme plastic deformation. Proc Natl Acad Sci. 2014;111(12):4386–4390. doi: 10.1073/pnas.1319436111
  • Liu Y, Bufford D, Wang H, et al. Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 2011;59:1924–1933. doi: 10.1016/j.actamat.2010.11.057
  • Barshilia HC, Rajam KS. Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf Coat Tech. 2002;155:195–202. doi: 10.1016/S0257-8972(02)00008-7
  • Kramer DE, Foecke T. Transmission electron microscopy observations of deformation and fracture in nanolaminated Cu–Ni thin films. Philos Mag. 2002;82:3375–3381. doi: 10.1080/01418610208240448
  • Zheng SJ, Shao S, Zhang J, et al. Adhesion of voids to bimetal interfaces with non-uniform energies. Sci Rep. 2015;5: article no. 15428. doi: 10.1038/srep15428
  • Tian YZ, Zhang ZF. Bulk eutectic Cu–Ag alloys with abundant twin boundaries. Scripta Mater. 2012;66:65–68. doi: 10.1016/j.scriptamat.2011.09.024
  • Zheng SJ, Wang J, Carpenter JS, et al. Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 2014;79:282–291. doi: 10.1016/j.actamat.2014.07.017
  • Jang D, Li X, Gao H, et al. Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotech. 2012;7:594–601. doi: 10.1038/nnano.2012.116
  • Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science. 2009;323:607–610. doi: 10.1126/science.1167641
  • Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426. doi: 10.1126/science.1092905
  • Chen Y, Yu KY, Shao S, et al. Damage-tolerant nanotwinned metals with nanovoids under radiation environments. Nat Commun. 2015;6: article no. 7036. doi: 10.1038/ncomms8036
  • Li X, Wei Y, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature. 2010;464:877–880. doi: 10.1038/nature08929
  • Zhang X, Wang H, Cheng XH, et al. High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl Phys Lett. 2006;88: article no. 173116. doi: 10.1063/1.2198482
  • Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12:697–702. doi: 10.1038/nmat3646
  • Ham B, Zhang X. High strength Mg/Nbnanolayer composites. Mater Sci Eng A. 2011;528:2028–2033. doi: 10.1016/j.msea.2010.10.101
  • Kumar A, Beyerlein IJ, Wang J. First-principles study of the structure of Mg/Nb multilayers. Appl Phys Lett. 2014;105: article no. 071602. doi: 10.1063/1.4893700
  • Junkaew A, Ham B, Zhang X, et al. Investigation of interfaces in Mg/Nb multilayer thin films. Comp Mater Sci. 2015;108:212–225. doi: 10.1016/j.commatsci.2015.07.003
  • Kang F, Li Z, Wang JT, et al. The activation of<c+a> non-basal slip in magnesium alloys. J Mater Sci. 2012;47:7854–7859. doi: 10.1007/s10853-012-6344-z
  • Nogaret T, Curtin WA, Yasi JA, et al. Atomistic study of edge and screw<c+a> dislocations in magnesium. Acta Mater. 2010;58:4332–4343. doi: 10.1016/j.actamat.2010.04.022
  • Tonda H, Ando S. Effect of temperature and shear direction o yield stress by {112}<23> slip in HCP metals. Metall Mater Trans A. 2002;33A:831–836. doi: 10.1007/s11661-002-0152-z
  • Tonda H, Ando S, Takashima K, et al. Anomalous temperature dependence of the yield stress by {1122}<1123> secondary pyramidal slip in cadmium crystals-I. Experiments. Acta Metall Mater. 1994;42:2845–2851. doi: 10.1016/0956-7151(94)90225-9
  • Stohr, JF, Poirier JP. Etude enmicroscopieelectronique du glissement pyramidal {1122}<1123>dans le magnesium. Philos Mag. 1972;25:1313–1329. doi: 10.1080/14786437208223856
  • Hirth JP, Feng X. Critical layer thickness for misfit dislocation stability in multilayer structures. J Appl Phys. 1990;67:3343–3349. doi: 10.1063/1.345371
  • Hoagland RG, Hirth JP, Misra A. On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos Mag. 2006;86:3537–3558. doi: 10.1080/14786430600669790
  • Wang J, Misra A. Strain hardening in nanolayered thin films. Curr Opin Solid State Mater Sci. 2014;18:19–28. doi: 10.1016/j.cossms.2013.10.003
  • Zhang JY, Liu Y, Chen J, et al. Mechanical properties of crystalline Cu/Zr and crystal-amorphous Cu/Cu-Zr multilayers. Mater Sci Eng A. 2012;552:392–398. doi: 10.1016/j.msea.2012.05.056
  • Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater. 2007;55:4067–4109. doi: 10.1016/j.actamat.2007.01.052
  • Cheng YQ, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci. 2011;56:379–473. doi: 10.1016/j.pmatsci.2010.12.002
  • Trexler MM, Thadhani NN. Mechanical properties of bulk metallic glasses. Prog Mater Sci. 2010;55: 759–839. doi: 10.1016/j.pmatsci.2010.04.002
  • Chen M. Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu Rev Mater Res. 2008;38:445–469. doi: 10.1146/annurev.matsci.38.060407.130226
  • Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci. 2012;57:487–656. doi: 10.1016/j.pmatsci.2011.07.001
  • Wang Y, Li J, Hamza AL, et al. Ductile crystalline-amorphous nanolaminates. Proc Natl Acad Sci USA. 2007;104:11155–11160. doi: 10.1073/pnas.0702344104
  • Brandl C, Germann TC, Misra A. Structure and shear deformation of metallic crystalline-amorphous interfaces. Acta Mater. 2013;61:3600–3611. doi: 10.1016/j.actamat.2013.02.047
  • Arman B, Brandl C, Luo SN, et al. Plasticity in Cu(111)/Cu46Zr54 glass nanolaminates under uniaxial compression. J Appl Phys. 2011;110: article no. 043539. doi: 10.1063/1.3627163
  • Rodney D, Deby JB, Verdier M. Atomic-scale modelling of plasticity at a metal film/amorphous substrate interface. Model Simul Mater Sci. 2005;13:427–436. doi: 10.1088/0965-0393/13/3/011
  • Dehm G, Arzt E. In situ transmission electron microscopy study of dislocations in a polycrystalline Cu thin film constrained by a substrate. Appl Phys Lett. 2000;77:1126–1128. doi: 10.1063/1.1289488
  • Mülner P, Arzt E. Observation of dislocation disappearance in aluminum thin films and consequences for thin film properties. Mater Res Soc Symp Proc. 1998;505:149–156. doi: 10.1557/PROC-505-149
  • Rehder EM, Inoki CK, Kuan TS, et al. SiGe relaxation on silicon-on-insulator substrates: an experimental and modeling study. J Appl Phys. 2003;94:7892–7903. doi: 10.1063/1.1628406
  • Chou HS, Du XH, Lee CJ, et al. Enhanced mechanical properties of multilayered micropillars of amorphous ZrCuTi and nanocrystalline Ta layers. Intermetallics. 2011;19:1047–1051. doi: 10.1016/j.intermet.2011.03.015
  • Weihst TP, Barbee Jr TW, Wall MA. Hardness, ductility, and thermal processing of Cu/Zr and Cu/Cu-Zr nanoscale multilayer foils. Acta Mater. 1997;45(6): 2307–2315. doi: 10.1016/S1359-6454(96)00370-9
  • Knorr I, Cordero NM, Lilleodden ET, et al. Mechanical behavior of nanoscale Cu/PdSi multilayers. Acta Mater. 2013;61:4984–4995. doi: 10.1016/j.actamat.2013.04.047
  • Donohue A, Spaepen F, Hoagland RG, et al. Suppression of the shear band instability during plastic flow of nanometerscale confined metallic glasses. Appl Phys Lett. 2007;91: article no. 241905. doi: 10.1063/1.2821227
  • Wang J, Huang H. Growth of Y-shaped nanorods through physical vapor deposition. Nano Lett. 2005;5:2505–2509. doi: 10.1021/nl0518425
  • Wang J, Huang H. Novel deformation mechanisms of twinned nanowires. Appl Phys Lett. 2006;88: article no. 203112. doi: 10.1063/1.2204760
  • Anderoglu O, Misra A, Wang J, et al. Plastic flow stability of nanotwinned Cu foils. Int J Plasticity. 2010;26:875–886. doi: 10.1016/j.ijplas.2009.11.003
  • Zhang X, Misra A, Wang H, et al. Effects of deposition parameters on residual stresses, hardness and electrical resisticity of nanoscale twinned 330 stainless steel thin films. J Appl Phys. 2005;97: article no. 0940302.
  • Ma E, Wang YM, Lu QH, et al. Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl Phys Lett. 2004;85:4932–4934. doi: 10.1063/1.1814431
  • Zhu T, Li J, Samanta S, et al. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Natl Sci USA. 2007;104:3031–3042. doi: 10.1073/pnas.0611097104
  • Afanasyev KA, Sansoz F. Strengthening in gold nanopillars with nanoscale twins. Nano Lett. 2007;7:2056–2062. doi: 10.1021/nl070959l
  • Sansoz F, Huang H, Warner DH. An atomistic perspective on twinning phenomena in nano-enhanced fcc metals. JOM. 2008;60:79–84. doi: 10.1007/s11837-008-0124-x
  • Wang J, Anderoglu O, Hirth JP, et al. Dislocation structures of Σ3{112} grain boundaries in face centered cubic metals. Appl Phys Lett. 2009;95: article no. 21908. doi: 10.1063/1.3176979
  • Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 2010;58:2262–2270. doi: 10.1016/j.actamat.2009.12.013
  • Wang J, Misra A, Hoagland RG, et al. Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater. 2012;60:1503–1513. doi: 10.1016/j.actamat.2011.11.047
  • Wang J. Atomistic simulations of dislocation pileup: grain boundaries interaction. JOM. 2015;67(7): 1515–1525. doi: 10.1007/s11837-015-1454-0
  • Chu, HJ, Wang J, Beyerlein IJ, et al. Dislocation models of interfacial shearing induced by an approaching lattice dislocation. Int J Plast. 2012;41:1–13. doi: 10.1016/j.ijplas.2012.08.005
  • Wang J, Zhou C, Beyerlein IJ, et al. Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM. 2014;66(1): 102–113. doi: 10.1007/s11837-013-0808-8
  • Li N, Wang J, Huang JY, et al. In situ TEM observation of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scripta Mater. 2010;63:363–366. doi: 10.1016/j.scriptamat.2010.04.005
  • Di ZF, Bai XM, Wei QM, et al. Tunable helium bubble superlattice ordered by screw dislocation network. Phys Rev B. 2011;84: article no. 052101. doi: 10.1103/PhysRevB.84.052101
  • Li N, Wang J, Wang YQ, et al. Incoherent twin boundary migration induced by ion irradiation in Cu. J Appl Phys. 2013;113: article no. 023508. doi: 10.1063/1.4774242
  • Rose M, Balogh AG, Hahn H. Instability of irradiation induced defects in nanostructured materials. Nuc Instrum Methods Phys Res. 1997;127/128:119–122. doi: 10.1016/S0168-583X(96)00863-4
  • Chimi Y, Lwase A, Ishikawa N, et al. Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J Nucl Mater. 2001;297:355–357. doi: 10.1016/S0022-3115(01)00629-8
  • Martínez E, Caro A. Atomistic modeling of long-term evolution of twist boundaries under vacancy supersaturation. Phys Rev B. 2012;86: article no. 214109. doi: 10.1103/PhysRevB.86.214109
  • Martínez E, Hirth JP, Nastasi M. Structure of a 2 degrees (010) Cu twist boundary interface and the segregation of vacancies and He atoms. Phys Rev B.2012;85: article no. 060101. doi: 10.1103/PhysRevB.85.060101
  • Kolluri K, Demkowicz MJ. Formation, migration, and clustering of delocalized vacancies and interstitials at a solid-state semicoherent interface. Phys Rev B. 2012;85: article no. 205416. doi: 10.1103/PhysRevB.85.205416
  • Han WZ, Demkowicz MJ, Mara NA, et al. Design of radiation tolerant materials via interface engineering. Adv Mater. 2013;25:6975–6979. doi: 10.1002/adma.201303400
  • Kashinath A, Misra A, Demkowicz MJ. Stable storage of helium in nanoscale platelets at semicoherent interface. Phys Rev Lett. 2013;110: article no. 086101. doi: 10.1103/PhysRevLett.110.086101
  • Demkowicz MJ, Misra A, Caro A. The role of interface structure in controlling high helium concentrations. Curr Opin Solid State Mater Sci. 2012;16:101–108. doi: 10.1016/j.cossms.2011.10.003
  • Shao S, Wang J. Relaxation, structure, and properties of semicoherent interfaces. JOM. 2016;68:242–252. doi: 10.1007/s11837-015-1691-2
  • Shao S, Wang J, Misra A, et al. Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces. Sci Rep. 2013;3: article no. 2448.
  • Huang H, Wang J. Surface kinetics: step-facet barriers. Appl Phys Lett. 2003;83:4752–4754. doi: 10.1063/1.1631389
  • Henkelman G, Uberuaga BP, Jonsson G. A climbing image nudged elastic band method for finding saddle points and minimum energy path. J Chem Phys. 2000;133:9901–9904. doi: 10.1063/1.1329672
  • Wang J, Huang H, Cale TS. Diffusion barriers on Cu surfaces and near steps. Model Simul Mater Sci Eng.2004;12:1209–1225. doi: 10.1088/0965-0393/12/6/014
  • Wang J, Hoagland RG, Misra A. Phase transition and dislocation nucleation in Cu-Nb layered composites during physical vapor deposition. J Mater Res. 2008;23:1009–1014. doi: 10.1557/jmr.2008.0120
  • Budiman AS, Han SM, Li N, et al. Plasticity in the nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron Laue X-ray microdiffraction. J Mater Res. 2012;27:599–611. doi: 10.1557/jmr.2011.421
  • Misra A, Zhang X, Hammon D, et al. Work hardening in rolled nanolayered metallic composites. Acta Mater. 2005;53:221–226. doi: 10.1016/j.actamat.2004.09.018
  • Tian YZ, Zhang ZF. Stability of interfaces in a multilayered Ag–Cu composite during cold rolling. Scrip Mater. 2013;68(7): 542–545. doi: 10.1016/j.scriptamat.2012.12.014
  • Tian YZ, Li JJ, Zhang P, et al. Microstructures, strengthening mechanisms and fracture behavior of Cu–Ag alloys processed by high-pressure torsion. Acta Mater. 2012;60(1): 269–281. doi: 10.1016/j.actamat.2011.09.058
  • Zheng SJ, Beyerlein IJ, Wang J, et al. Deformation twinning mechanisms from bimetal interfaces as revealed by in situ straining in the TEM. Acta Mater. 2012;60:5858–5866. doi: 10.1016/j.actamat.2012.07.027
  • Han WZ, Carpenter JS, Wang J, et al. Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites. Appl Phys Lett. 2012;100: article no. 011911. doi: 10.1063/1.3675447
  • Mara NA, Bhattacharyya D, Hirth JP, et al. Mechanism for shear banding in nanolayered composites. Appl Phys Lett. 2010;97: article no. 021909. doi: 10.1063/1.3458000
  • Wang J, Kang K, Zhang RF, et al. Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM. 2012;64:1208–1217. doi: 10.1007/s11837-012-0429-7
  • Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Mater Sci Eng R. 2013;74:71–132. doi: 10.1016/j.mser.2013.04.001
  • Cui Y, Abad OT, Wang F, et al. Plastic deformation modes of CuZr/Cu multilayers. Sci Rep. 2016;6: article no. 23306. doi: 10.1038/srep23306
  • Shimizu F, Ogata S, Li J. Yield point of metallic glass. Acta Mater. 2006;54:4293–4298. doi: 10.1016/j.actamat.2006.05.024
  • Zhang JY, Liu G, Lei SY, et al. Transition from homogeneous-like to shear-band deformation in nanolayered crystalline Cu/amorphous Cu-Zr micropillars: Intrinsic vs. extrinsic size effect. Acta Mater. 2012;60:7183–7196. doi: 10.1016/j.actamat.2012.09.027
  • Guo W, Jägle EA, Choi PP, et al. Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates. Phys Rev Lett. 2014;113(3): article no. 035501. doi: 10.1103/PhysRevLett.113.035501
  • Guo W, et al. Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 2014;80:94–106. doi: 10.1016/j.actamat.2014.07.027
  • Heinemann D, Assenmacher W, Mader W, et al. Structural characterization of amorphous ceramics in the system Si–B–N–(C) by means of transmission electron microscopy methods. J Mater Res. 1999;14(9): 3746–3753. doi: 10.1557/JMR.1999.0507
  • Schon JC, Hannemann A, Sethi G, et al. Modelling structure and properties of amorphous silicon boron nitride ceramics. Proc & Appl of Ceramics. 2011;5(2): 49–61. doi: 10.2298/PAC1102049S
  • Itoh T, Nitta S, Nonomura S. Optical properties of amorphous multilayers a-Si:H/a-Si3N4:H with random well or barrier layer. J Non-Crystal Solids. 1989;114(2): 723–75. doi: 10.1016/0022-3093(89)90700-X
  • Nesheva D, Arsova D, Levi Z. Band and subband absorption of Se/CdSe amorphous multilayers. Philos Mag B. 1994;70(2): 205–213. doi: 10.1080/01418639408241801
  • Riedel R, Ruswisch LM, An L, et al. Amorphous SilicoboronCarbonitride Ceramic with Very High Viscosity at Temperatures above 1500°C. J Am Ceram Soc. 1998;81(12): 3341–3344. doi: 10.1111/j.1151-2916.1998.tb02780.x
  • Chawala N, Singh DRP, Shen YL, et al. Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites. J Mater Sci. 2008;43:4383–4390. doi: 10.1007/s10853-008-2450-3
  • Bertran E, Corbella E, Pinyol A, et al. Comparative study of metalyamorphous-carbon multilayer structures produced by magnetron sputtering. Diamond and Related Mater. 2003;12:1008–1012. doi: 10.1016/S0925-9635(02)00303-5
  • Drusedau TP, Panckow AN, Klabunde F. The hydrogenated amorphous silicon/nanodisperse metal (SIMAL) system—Films of unique electronic properties. J Non-Crystal Solids. 1996;198–200:829–832. doi: 10.1016/0022-3093(96)00050-6
  • Raghavan G, Rajaraman R. Role of defects in metal mediated crystallization in Al/a-Ge multilayers. Phys Rev B. 2003;68: article no. 012104. doi: 10.1103/PhysRevB.68.012104
  • Barzen I, Edinger M, Scherer J, et al. Mechanical properties of amorphous and polycrystalline multilayer systems. Surf & Coat Tech. 1993;60(1–3): 454–457. doi: 10.1016/0257-8972(93)90131-7
  • Babaev AA, Kamilov IK, Sultanov SB, et al. Photoluminescence of Amorphous Multilayer Structures a-C:H/a-Si:H. Glass Phys & Chem. 2005;31(3): 326–329. doi: 10.1007/s10720-005-0063-3
  • Chu PK, Li L. Characterization of amorphous and nanocrystalline carbon films. Mater Chem & Phys. 2006;96:253–277. doi: 10.1016/j.matchemphys.2005.07.048
  • Mishin Y, Asta M, Li J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater. 2010;58:1117–1151. doi: 10.1016/j.actamat.2009.10.049
  • Zbib HM, De la Rubia TD, Rhee M, et al. 3D dislocation dynamics: stress–strain behavior and hardening mechanisms in fcc and bcc metals. J Nucl Mater. 2000;276:154–165. doi: 10.1016/S0022-3115(99)00175-0
  • Fitzgerald EA, Kim AY, Currie MT, et al. Dislocation dynamics in relaxed graded composition semiconductors. Mater Sci Eng B. 1999;67:53–61. doi: 10.1016/S0921-5107(99)00209-3
  • Rhee M, Zbib HM, Hirth JP, et al. Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals. Model Simul Mater Sci Eng. 1998;6:467–492. doi: 10.1088/0965-0393/6/4/012
  • Zbib HM, Rhee M, Hirth JP. On plastic deformation and the dynamics of 3D dislocations. Int Journal Mech Sci. 1998;40:113–127. doi: 10.1016/S0020-7403(97)00043-X
  • Fertig RS, Baker SP. Simulation of dislocations and strength in thin films: a review. Prog Mater Sci. 2009;54:874–908. doi: 10.1016/j.pmatsci.2009.03.004
  • Arsenlis A, Cai W, Tang M, et al. Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng. 2007;15:553–595. doi: 10.1088/0965-0393/15/6/001
  • Shehadeh MA, Bringa EM, Zbib HM, et al. Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Appl Phys Lett. 2006;89: article no. 171918. doi: 10.1063/1.2364853
  • Overman NR, Overman OT, Zbib HM, et al. Yield and Deformation in Biaxially Stressed Multilayer Metallic Thin Films. J Eng Mater-T ASME. 2009;131: article no. 041203. doi: 10.1115/1.3183775
  • Soer WA, DeHosson JTM, Minor AM, et al. Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater. 2004;52:5783–5790. doi: 10.1016/j.actamat.2004.08.032
  • Marin EB. On the formulation of a crystal plasticity model. Sandia National Laboratories, CA, 2006, SAND2006-4170.
  • Groh S, Marin EB, Horstemeyer MF, et al. Multiscale modeling of the plasticity in an aluminum single crystal. Inter. J. Plast. 2009;25:1456–1473. doi: 10.1016/j.ijplas.2008.11.003
  • Marin EB, Dawson PR. On modeling the elasto-viscoplastic response of metals using polycrystal plasticity. Comput Method Appl M. 1998;165:1–21. doi: 10.1016/S0045-7825(98)00034-6