1,544
Views
5
CrossRef citations to date
0
Altmetric
Original Report

Revealing anelasticity and structural rearrangements in nanoscale metallic glass films using in situ TEM diffraction

, , , &
Pages 135-143 | Received 11 Jun 2016, Accepted 22 Aug 2016, Published online: 22 Sep 2016

References

  • Telford M. The case for bulk metallic glass. Mat Today. 2004;7:36–43. doi: 10.1016/S1369-7021(04)00124-5
  • Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mat Sci Eng:R. 2004;44:45–89. doi: 10.1016/j.mser.2004.03.001
  • Greer AL, Ma E. Bulk metallic glasses: at the cutting edge of metals research. MRS bulletin. 2007;32(8):611–619. doi: 10.1557/mrs2007.121
  • Ashby MF, Greer AL. Metallic glasses as structural materials. Scripta Mater. 2006;54:321–326. doi: 10.1016/j.scriptamat.2005.09.051
  • Wang ZT, Pan J, Li Y, et al. Densification and strain hardening of a metallic glass under tension at room temperature. Phy Rev Lett. 2013;111:135504. doi: 10.1103/PhysRevLett.111.135504
  • Jang D, Greer JR. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater 2010;9(3):215–219.
  • Tian L, Wang XL, Shan ZW. Mechanical behavior of micronanoscaled metallic glasses. Mater Res Lett. 2016;4:63–74. doi: 10.1080/21663831.2015.1124298
  • Zhong C, Zhang H, Cao QP, et al. On the critical thickness for non-localized to localized plastic flow transition in metallic glasses: a molecular dynamics study. Scripta Mater. 2016;114:93–97. doi: 10.1016/j.scriptamat.2015.12.012
  • Hufnagel CT, Schuh CA, Falk ML. Deformation of metallic glasses: recent developments in theory, simulations, and experiments. Acta Mater. 2016;109:375–393. doi: 10.1016/j.actamat.2016.01.049
  • Dmowski W, Iwashita T, Chuang CP, et al. Elastic heterogeneity in metallic glasses. Phy Rev Lett. 2010;105:205502. doi: 10.1103/PhysRevLett.105.205502
  • Antonaglia J, Wright WJ, Gu X, et al. Bulk metallic glasses deform via slip avalanches. Phy Rev Lett. 2014;112:155501. doi: 10.1103/PhysRevLett.112.155501
  • Bruck HA, Christman T, Rosakis AJ, et al. Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. Scripta Metall et Mater. 1994;30(4):429–434. doi: 10.1016/0956-716X(94)90598-3
  • Bruck HA, Rosakis AJ, Johnson WL. The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J Mater Res. 1996;11:503–511. doi: 10.1557/JMR.1996.0060
  • Hays CC, Kim CP, Johnson WL. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phy Rev Lett. 2000;84:2901–2904. doi: 10.1103/PhysRevLett.84.2901
  • Poulsen HF, Wert JA, Neuefeind J, et al. Measuring strain distributions in amorphous materials. Nat Mater. 2005;4:33–36. doi: 10.1038/nmat1266
  • Wang XD, Bednarcik J, Saksl K, et al. Tensile behavior of bulk metallic glasses by in situ x-ray diffraction. App Phy Lett. 2007;91:081913. doi: 10.1063/1.2773945
  • Mattern N, Bednarčik J, Pauly S, et al. Structural evolution of Cu–Zr metallic glasses under tension. Acta Mater. 2009;57:4133–4139. doi: 10.1016/j.actamat.2009.05.011
  • Hufnagel TC, Ott RT, Almer J. Structural aspects of elastic deformation of a metallic glass. Phy Rev B. 2006;73:064204. doi: 10.1103/PhysRevB.73.064204
  • Vempati UK, Valavala PK, Falk ML, et al. Length-scale dependence of elastic strain from scattering measurements in metallic glasses. Phy Rev B. 2012;85:214201. doi: 10.1103/PhysRevB.85.214201
  • Ma D, Stoica AD, Wang XL, et al. Elastic moduli inheritance and the weakest link in bulk metallic glasses. Phy Rev Lett. 2012;108:085501. doi: 10.1103/PhysRevLett.108.085501
  • Scudino S, Shahabi HS, Stoica M, et al. Structural features of plastic deformation in bulk metallic glasses. Appl Phys Lett. 2015;106:031903. doi: 10.1063/1.4906305
  • Hufnagel TC, Vempati UK, Almer JD. Crack-tip strain field mapping and the toughness of metallic glasses. PLoS ONE. 2013;8:e83289. doi: 10.1371/journal.pone.0083289
  • Huang Y, Khong JC, Connolley T, et al. The onset of plasticity of a Zr-based bulk metallic glass. Int J Plastic. 2014;60:87–100. doi: 10.1016/j.ijplas.2014.05.003
  • Ebner C, Sarkar R, Rajagopalan J, et al. Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction. Ultramicroscopy. 2016;165:51–58. doi: 10.1016/j.ultramic.2016.04.004
  • Nagendra N, Ramamurty U, Goh TT, et al. Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Mater. 2000;48(10):2603–2615. doi: 10.1016/S1359-6454(00)00052-5
  • Haque MA, Saif MTA. In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech. 2002;42(1):123–128. doi: 10.1007/BF02411059
  • Han JH, Saif MTA. In situ microtensile stage for electromechanical characterization of nanoscale freestanding films. Rev Sci Inst. 2006;77:045102. doi: 10.1063/1.2188368
  • Kang W, Rajagopalan J, Saif MTA. In situ uniaxial mechanical testing of small scale materials—a review. Nano & Nano Lett. 2010;2:282–287. doi: 10.1166/nnl.2010.1107
  • Sarkar R, Rentenberger C, Rajagopalan J. Electron beam induced artifacts during in situ TEM deformation of nanostructured metals. Sci Rep. 2015;5:16345. doi: 10.1038/srep16345
  • Izadi E, Rajagopalan J. Texture dependent strain rate sensitivity of ultrafine-grained aluminum films, Scripta Mater. 2016;114:65–69. doi: 10.1016/j.scriptamat.2015.12.003
  • Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Mat Sci Eng R. 2013;74:71–132. doi: 10.1016/j.mser.2013.04.001
  • Chen H, He Y, Shiflet GJ, et al. Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature. 1994;367:541–543. doi: 10.1038/367541a0
  • He Y, Schwarz RB, Migliori A, et al. Elastic constants of single crystal γ – TiAl, J Mater Res. 1995;10:1187–1195. doi: 10.1557/JMR.1995.1187
  • Chen HS, Krause JT, Coleman E. Elastic constants, hardness and their implications to flow properties of metallic glasses. J Non-Crystal Solids. 1975;18:157–171. doi: 10.1016/0022-3093(75)90018-6
  • Wang WH. Correlations between elastic moduli and properties in bulk metallic glasses. J App Phy. 2006;99:093506. doi: 10.1063/1.2193060
  • Calin M, Eckert J, Schultz L. Improved mechanical behavior of Cu–Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 2003;48:653–658. doi: 10.1016/S1359-6462(02)00560-2
  • Svab E, Kroo N, Ishmaev SN, et al. High resolution neutron diffraction study on Fe81B19 metallic glass. Solid State Comm. 1982;44(8):1151–1155. doi: 10.1016/0038-1098(82)91074-2
  • Svab E, Kroo N, Ishmaev SN, et al. Short range order in (Ni 65 Fe 35) 77 B 23 metallic glass by neutron diffraction. Solid State Comm. 1983;46(4):351–353. doi: 10.1016/0038-1098(83)90669-5
  • Ye JC, Lu J, Liu CT, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat Mater. 2010;9(8):619–623. doi: 10.1038/nmat2802
  • Chang CM, Wang CH, Hsu JH, et al. Al–Ni–Y–X (X = Cu, Ta, Zr) metallic glass composite thin films for broad-band uniform reflectivity. Thin Solid Films. 2014;571:194–197. doi: 10.1016/j.tsf.2014.10.048
  • Tong Y, Iwashita T, Dmowski W, et al. Structural rejuvenation in bulk metallic glasses. Acta Mater. 2015;86:240–246. doi: 10.1016/j.actamat.2014.12.020
  • Cheng YQ, Ma E. Atomic-level structure and structure–property relationship in metallic glasses. Prog Mater Sci. 2011;56(4):379–473. doi: 10.1016/j.pmatsci.2010.12.002
  • Ding J, Cheng YQ, Ma E. Correlating local structure with inhomogeneous elastic deformation in a metallic glass. App Phy Lett. 2012;101(12):121917. doi: 10.1063/1.4754121
  • Lewandowski JJ, Wang WH, Greer AL. Intrinsic plasticity or brittleness of metallic glasses. Phil Mag Lett. 2005;85(2):77–87. doi: 10.1080/09500830500080474