2,581
Views
27
CrossRef citations to date
0
Altmetric
Original Report

Cryogenic-temperature-induced structural transformation of a metallic glass

, , , , , , , & show all
Pages 284-291 | Received 21 Jul 2016, Published online: 30 Nov 2016

References

  • Chen MW. Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu Rev Mater Res. 2008;38:445–469. doi: 10.1146/annurev.matsci.38.060407.130226
  • Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater. 2007;55:4067–4109. doi: 10.1016/j.actamat.2007.01.052
  • Liu YH, Fujita T, Aji DPB, et al. Structural origins of Johari-Goldstein relaxation in a metallic glass. Nat Commun. 2014;5:3238.
  • Chen HS, Coleman E. Structure relaxation spectrum of metallic glasses. Appl Phys Lett. 1976;28:245–247. doi: 10.1063/1.88725
  • Hufnagel TC, Schuh CA, Falk ML. Deformation of metallic glasses: recent developments in theory, simulations, and experiments. Acta Mater. 2016;109:375–393. doi: 10.1016/j.actamat.2016.01.049
  • Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977;25:407–415. doi: 10.1016/0001-6160(77)90232-2
  • Argon AS. Plastic deformation in metallic glasses. Acta Metall. 1979:27:47–58. doi: 10.1016/0001-6160(79)90055-5
  • Miracle DB. A structural model for metallic glasses. Nat Mater. 2004;3:697–702. doi: 10.1038/nmat1219
  • Wang Z, Sun BA, Bai HY, et al. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nat Commun. 2014;5:5823. doi: 10.1038/ncomms6823
  • Lu Z, Jiao W, Wang WH, et al. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Phys Rev Lett. 2014;113:045501. doi: 10.1103/PhysRevLett.113.045501
  • Ding J, Patinet S, Falk ML, et al. Soft spots and their structural signature in a metallic glass. Proc Nat Acad Sci USA. 2014;111:14052–14056. doi: 10.1073/pnas.1412095111
  • Ye JC, Lu J, Liu CT, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat Mater. 2010;9:619–623. doi: 10.1038/nmat2802
  • Johnson WL, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys Rev Lett. 2005;95:195501. doi: 10.1103/PhysRevLett.95.195501
  • Cao XF, Gao M, Zhao LZ, et al. Microstructural heterogeneity perspective on the yield strength of metallic glasses. J Appl Phys. 2016;119:084906. doi: 10.1063/1.4942625
  • Mondal K, Ohkubo T, Toyama T, et al. The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses. Acta Mater. 2008;56:5329–5339. doi: 10.1016/j.actamat.2008.07.012
  • Liu ZY, Chen MW, Liu CT, et al. Origin of yielding in metallic glass: stress-induced flow. Appl Phys Lett. 2014;104:251901. doi: 10.1063/1.4884066
  • Zhang Y, Greer AL. Thickness of shear bands in metallic glasses. Appl Phys Lett. 2006;89:1907.
  • Jiang MQ, Dai LH. Short-range-order effects on intrinsic plasticity of metallic glasses. Phil Mag Lett. 2010;90:269–277. doi: 10.1080/09500831003630781
  • Hufnagel TC, Ott RT, Almer J. Structural aspects of elastic deformation of a metallic glass. Phys Rev B. 2006;73:064204. doi: 10.1103/PhysRevB.73.064204
  • Schuh CA, Lund AC, Nieh TG. New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 2004;52:5879–5891. doi: 10.1016/j.actamat.2004.09.005
  • Shahabi HS, Scudino S, Kaban I, et al. Structural aspects of elasto-plastic deformation of a Zr-based bulk metallic glass under uniaxial compression. Acta Mater. 2015;95:30–36. doi: 10.1016/j.actamat.2015.05.011
  • Jakse N, Hennet L, Price DL, et al. Structural changes on supercooling liquid silicon. Appl Phys Lett. 2003;83:4734–4736. doi: 10.1063/1.1631388
  • Kelton KF, Lee GW, Gangopadhyay AK, et al. First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys Rev Lett. 2003;90:195504. doi: 10.1103/PhysRevLett.90.195504
  • Lou HB, Wang XD, Cao QP, et al. Negative expansions of interatomic distances in metallic melts. Proc Nat Acad Sci USA. 2013;110:10068–10072. doi: 10.1073/pnas.1307967110
  • Mattern N, Stoica M, Vaughan G, et al. Thermal behaviour of Pd40Cu30Ni10P20 bulk metallic glass. Acta Mater. 2012;60:517–524. doi: 10.1016/j.actamat.2011.10.032
  • Li HQ, Fan C, Tao KX, et al. Compressive behavior of a Zr-based metallic glass at cryogenic temperatures. Adv Mater. 2006;18:752–754. doi: 10.1002/adma.200501990
  • Ketov SV, Sun YH, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature 2015;524:200–203. doi: 10.1038/nature14674
  • Liu ZY, Wang G, Chan KC, et al. Temperature dependent dynamics transition of intermittent plastic flow in a metallic glass. I. Experimental investigations. J Appl Phys. 2013;114:033520. doi: 10.1063/1.4815943
  • Dubach A, Dalla Torre FH, Löffler JF. Constitutive model for inhomogeneous flow in bulk metallic glasses. Acta Mater. 2009;57:881–892. doi: 10.1016/j.actamat.2008.10.027
  • Maaß R, Klaumünzer D, Preiß EI, et al. Single shear-band plasticity in a bulk metallic glass at cryogenic temperatures. Scr Mater. 2012;66:231–234. doi: 10.1016/j.scriptamat.2011.10.044
  • Liu YH, Wang G, Wang RJ, et al. Super plastic bulk metallic glasses at room temperature. Science 2007;315:1385–1388. doi: 10.1126/science.1136726
  • Kato H, Kawamura Y, Inoue A, et al. Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20. Appl Phys Lett. 1998;73:3665. doi: 10.1063/1.122856
  • Caillard D, Martin J-L. Thermally activated mechanisms in crystal plasticity. London: Elsevier; 2003.
  • Wang YM, Hamza AV, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 2006;54:2715–2726. doi: 10.1016/j.actamat.2006.02.013
  • Yang XS, Wang YJ, Wang GY, et al. Time, stress, and temperature-dependent deformation in nanostructured copper: stress relaxation tests and simulations. Acta Mater. 2016;108:252–263. doi: 10.1016/j.actamat.2016.02.021
  • Zhang ZF, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 2003;51:1167–1179. doi: 10.1016/S1359-6454(02)00521-9
  • Jiang MQ, Wilde G, Chen JH, et al. Cryogenic-temperature-induced transition from shear to dilatational failure in metallic glasses. Acta Mater. 2014;77:248–257. doi: 10.1016/j.actamat.2014.05.052
  • Bletry M, Guyot P, Brechet Y, et al. Homogeneous deformation of bulk metallic glasses in the super-cooled liquid state. Mater Sci Eng A. 2004;387–389:1005–1011. doi: 10.1016/j.msea.2004.02.085
  • Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature. 2001;410:259–267. doi: 10.1038/35065704
  • Ma D, Stoica AD, Wang XL. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat Mater. 2009;8:30–34. doi: 10.1038/nmat2340
  • Tan J, Wang G, Liu ZY, et al. Correlation between atomic structure evolution and strength in a bulk metallic glass at cryogenic temperature. Sci Rep. 2013;4:3897.
  • Stoica M, Das J, Bednarcik J, et al. Strain distribution in Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass investigated by in situ tensile tests under synchrotron radiation. J Appl Phys. 2008;104:013522. doi: 10.1063/1.2952034
  • Bian XL, Wang G, Chen HC, et al. Manipulation of free volumes in a metallic glass through Xe-ion irradiation. Acta Mater. 2016;106:66–77. doi: 10.1016/j.actamat.2016.01.002
  • Zhao LZ, Xue RJ, Li YZ, et al. Revealing localized plastic flow in apparent elastic region before yielding in metallic glasses. J Appl Phys. 2015;118:244901. doi: 10.1063/1.4938567
  • Wang G, Mattern N, Bednarčík J. Correlation between elastic structural behavior and yield strength of metallic glasses. Acta Mater. 2012;60:3074–3083. doi: 10.1016/j.actamat.2012.02.012
  • Bian XL, Wang G, Chan KC, et al. Shear avalanches in metallic glasses under nanoindentation: deformation units and rate dependent strain burst cut-off. Appl Phys Lett. 2013;103:101907.
  • Huang R, Suo Z, Prevost JH, et al. Inhomogeneous deformation in metallic glasses. J Mech Phys Solids. 2002;50:1011–1027. doi: 10.1016/S0022-5096(01)00115-6
  • Sun BA, Liu ZY, Yang Y, et al. Delayed shear banding and evolution of local plastic flow in a metallic glass. Appl Phys Lett. 2014;105:091904. doi: 10.1063/1.4894860
  • Wang Q, Zhang ST, Yang Y, et al. Unusual fast secondary relaxation in metallic glass. Nat Commun. 2015;6:7876. doi: 10.1038/ncomms8876