3,374
Views
45
CrossRef citations to date
0
Altmetric
Brief Overview

Magnetotransport in the MAX phases and their 2D derivatives: MXenes

& ORCID Icon
Pages 365-378 | Received 03 Feb 2017, Published online: 13 Jun 2017

References

  • Ouisse T, Shi L, Piot BA, et al. Magnetotransport properties of nearly-free electrons in two-dimensional hexagonal metals and application to the Mn + 1AXn phases. Phys Rev B. 2015;92:045133. doi: 10.1103/PhysRevB.92.045133
  • Nowotny H. Strukturchemie Einiger Verbindungen der Ubergangsmetalle mit den elementen C, Si, Ge, Sn. Prog Solid State Chem. 1970;2:27–30. doi: 10.1016/0022-4596(70)90028-9
  • Barsoum MW, El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Amer Cer Soc. 1996;79:1953–1956. doi: 10.1111/j.1151-2916.1996.tb08018.x
  • Barsoum MW, Brodkin D, El-Raghy T. Layered machinable ceramics for high temperature applications. Scrip Met Mater. 1997;36:535–541. doi: 10.1016/S1359-6462(96)00418-6
  • Barsoum MW, Farber L, Levin I, et al. High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited. J Amer Cer Soc. 1999;82:2545–2547. doi: 10.1111/j.1151-2916.1999.tb02117.x
  • Naguib M, Kurtoglu M, Presser V, et al. Two dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306
  • Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6:1322–1331. doi: 10.1021/nn204153h
  • Medvedeva N, Novikov D, Ivanovsky A, et al. Electronic properties of Ti3SiC2-based solid solutions. Phys Rev B. 1998;58:16042–16050. doi: 10.1103/PhysRevB.58.16042
  • Hug G, Fries E. Full-potential electronic structure of Ti2AlC & Ti2AlN. Phys Rev B. 2002;65:113104. doi: 10.1103/PhysRevB.65.113104
  • Ahuja R, Eriksson O, Wils JM, et al. Electronic structure of Ti3SiC2. Appl Phys Lett. 2000;76:2226–2228. doi: 10.1063/1.126304
  • Lofland SE, Hettinger JD, Meehan T, et al. Electron-phonon coupling in MAX phase carbides. Phys Rev B. 2006;74:174501. doi: 10.1103/PhysRevB.74.174501
  • Drulis MK, Czopnik A, Drulis H, et al. Low temperature heat capacity and magnetic susceptibility of Ti3SiC2. J Appl Phys. 2004;95:128–133. doi: 10.1063/1.1631077
  • Drulis MK, Czopnik A, Drulis H, et al. On the heat capacities of Ti3GeC2. Mater Sci Eng B. 2005;119:159–163. doi: 10.1016/j.mseb.2005.02.045
  • Drulis MK, Drulis H, Gupta S, et al. On the heat capacities of M2AlC (M = Ti, V, Cr) ternary carbides. J Appl Phys. 2006;99:093502. doi: 10.1063/1.2191744
  • Barsoum MW. MAX phases: properties of machinable carbides and nitrides. Weinheim: Wiley VCH GmbH; 2013.
  • Yoo HI, Barsoum MW, El-Raghy T. Ti3SiC2: a material with negligible thermopower over an extended temperature range. Nature. 2000;407:581–582. doi: 10.1038/35036686
  • Finkel P, Hettinger JD, Lofland SE, et al. Magnetotransport properties of the ternary carbide Ti3SiC2: hall effect, magnetoresistance and magnetic susceptibility. Phys Rev B. 2001;65:035113. doi: 10.1103/PhysRevB.65.035113
  • Finkel P, Barsoum MW, Hettinger JD, et al. Low-temperature transport properties of nanolaminates Ti3AlC2 and Ti4AlN3. Phys Rev B. 2003;67:235108. doi: 10.1103/PhysRevB.67.235108
  • Hettinger JD, Lofland SE, Finkel P, et al. Electrical transpot, thermal transport and elastic properties of M2AlC (M = Ti, Cr, Nb and V) phases. Phys Rev B. 2005;72:115120. doi: 10.1103/PhysRevB.72.115120
  • Scabarozi TH, Eklund P, Emmerlich J, et al. Weak electronic anisotropy in the layered nanolaminate Ti2GeC. Solid State Commun. 2008;146:498–501. doi: 10.1016/j.ssc.2008.03.026
  • Zhou YC, Dong HY, Wang XH, et al. Electronic structure of the layered ternary carbides Ti2SnC and Ti2GeC. J Phys: Condens Matter. 2000;12:9617–9627.
  • Chaput L, Hug G, Pecheur P, et al. Ansiotropy and thermopower is Ti3SiC2. Phys Rev B. 2005;71:121104(R). doi: 10.1103/PhysRevB.71.121104
  • Chaput L, Hug G, Pecheur P, et al. Thermopower of the 312 MAX phases Ti3SiC2, Ti3GeC2, and Ti3AlC2. Phys Rev B. 2007;75:035107. doi: 10.1103/PhysRevB.75.035107
  • Magnuson M, Mattesini M, Van Nong N, et al. The electronic-structure origin of the anisotropic thermopower of nanolaminated Ti3SiC2 determined by polarized X-ray spectroscopy. Phys Rev B. 2012;85:195134. doi: 10.1103/PhysRevB.85.195134
  • Mauchamp V, Yu W, Gence L, et al. Anisotropy of the resistivity and charge-carrier sign in nanolaminated Ti2AlC: experiment and ab initio calculations. Phys Rev B. 2013;87:235105. doi: 10.1103/PhysRevB.87.235105
  • Ouisse T, Sarigiannidou E, Chaix-Pluchery O, et al. High temperature solution growth and characterization of Cr2AlC single crystals. J Crystal Growth. 2013;384:88–95. doi: 10.1016/j.jcrysgro.2013.09.021
  • Shi L, Ouisse T, Sarigiannidou E, et al. Synthesis of single crystals of V2AlC phase by high-temperature solution growth and slow cooling technique. Acta Mater. 2015;83:304–309. doi: 10.1016/j.actamat.2014.10.018
  • Mercier F, Chaix-Pluchery O, Ouisse T, et al. Raman scattering from Ti3SiC2 single crystals. Appl Phys Letters. 2011;98:081912. doi: 10.1063/1.3558919
  • Ong NP. Geometric interpretation of the weak-field Hall conductivity in two-dimensional metals with arbitrary Fermi surface. Phys Rev B. 1991;43:193–201. doi: 10.1103/PhysRevB.43.193
  • Banik NC, Overhauser AW. Hall coefficient of a holelike Fermi surface. Phys Rev B. 1978;18:1521–1532. doi: 10.1103/PhysRevB.18.1521
  • Lane NJ, Vogel S, Caspi E, et al. High-temperature neutron diffraction study of Ti2AlC, Ti3AlC2 and Ti5Al2C3. J Appl Phys. 2013;113:183519. doi: 10.1063/1.4803700
  • Kanoun MB, Goumri-Said S, Reshak AH. Theoretical study of mechanical, electronic, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC. Comp Mater Sci. 2009;47:491–500. doi: 10.1016/j.commatsci.2009.09.015
  • Kanoun MB, Goumri-Said S, Reshak AH, et al. Electro-structural correlations, elastic and optical properties among the nanolaminated ternary carbides Zr2AC. Solid State Sci. 2010;12:887. doi: 10.1016/j.solidstatesciences.2010.01.035
  • Shein IR, Ivanovskii AL. Structural, elastic, electronic properties and Fermi surface for superconducting Mo2GaC in comparison with V2GaC and Nb2GaC from first principles. Physica C. 2010;470:533–537. doi: 10.1016/j.physc.2010.04.010
  • Mattesini M, Magnuson M. Electronic correlation effects in the Cr2GeC Mn + 1AXn phase. J Phys Cond Matter. 2013;25:035601. doi: 10.1088/0953-8984/25/3/035601
  • Jia G-Z, Yang L-J. Ab initio calculations for properties of Ti2AlN and Cr2AlC. Physica B. 2010;405:4561–4564. doi: 10.1016/j.physb.2010.08.038
  • Martin S, Fiory AT, Fleming RM, et al. Temperature-dependence of the resistivity tensor in superconducting BI2Sr2.2Ca0.8Cu2O8 crystals. Phys Rev Lett. 1988;60: 2194. doi: 10.1103/PhysRevLett.60.2194
  • Armitage NP, Fournier P, Greene RL. Progress and perspectives on electron-doped cuprates. Rev Mod Phys. 2010;82:2421. doi: 10.1103/RevModPhys.82.2421
  • Klein CA. Electrical properties of pyrolytic graphites. Rev Mod Phys. 1962;34:56. doi: 10.1103/RevModPhys.34.56
  • Shein IR, Ivanovskii AL. Structural, elastic, and electronic properties of new 211 MAX phase Nb2GeC from first-principles calculations. Physica B. 2013;410:42–48. doi: 10.1016/j.physb.2012.10.036
  • Shishido H, Shibauchi T, Yasu K, et al. Tuning the dimensionality of the heavy fermion compound CeIn3. Science. 2010;327:980. doi: 10.1126/science.1183376
  • Ingason AS, Dahlqvist M, Rosen J. Magnetic MAX phases from theory and experiments; a review. J Phys Cond Matter. 2016;28:433003. doi: 10.1088/0953-8984/28/43/433003
  • Dahlqvist M, Ingason AS, Alling B, et al. Magnetically driven anisotropic structural changes in the atomic laminate Mn2GaC. Phys Rev B. 2016;93:014410. doi: 10.1103/PhysRevB.93.014410
  • Liu Z, Waki T, Tabata Y, et al. Mn-doping-induced itinerant-electron ferromagnetism in Cr2GeC. Phys Rev B. 2014;89:054435. doi: 10.1103/PhysRevB.89.054435
  • Tao QZ, Hu CF, Lin S, et al. Coexistence of ferromagnetic and a re-entrant cluster glass state in the layered quaternary (Cr1-x,Mnx)2GeC. Mater Res Lett. 2014;2:192–198. doi: 10.1080/21663831.2014.909542
  • Lin S, Tong P, Wang BS, et al. Magnetic and electrical/thermal transport properties of Mn-doped Mnn +1AXn phase compounds Cr2-xMnxGaC (0< × < 1). J Appl Phys. 2013;113:053502. doi: 10.1063/1.4789954
  • Anderson PW. Hall-effect in the 2-dimensional luttinger liquid. Phys Rev Lett. 1991;67:2092. doi: 10.1103/PhysRevLett.67.2092
  • Kontani H. Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations. Rep Prog Phys. 2008;71:026501. doi: 10.1088/0034-4885/71/2/026501
  • Luo N, Miley GH. Kohler’s rule and relaxation rates in high-T-c superconductors. Physica C. 2002;371:259. doi: 10.1016/S0921-4534(01)01101-7
  • Harris M, Yan FY, Matl P, et al. Violation of Kohler’s rule in the normal state magnetoresistance of YBau3O7-δ and La2SrxCuO4. Phys Rev Lett. 1995;75:1391. doi: 10.1103/PhysRevLett.75.1391
  • Nakajima Y, Shishido H, Nakai H, et al. Non-Fermi liquid behavior in the magnetotransport of CeMln5 (M: Co and Rh): striking similarity between quasi two-dimensional heavy fermion and high-T-c cuprates. J Phys Soc Japan. 2007;76:024703. doi: 10.1143/JPSJ.76.024703
  • Kasahara S, Shibauchi T, Hashimoto K, et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1-xPx)2 superconductors. Phys Rev B. 2010;81:184519. doi: 10.1103/PhysRevB.81.184519
  • Ghosh N, Bharathi A, Satya AT, et al. Kohler’s rule in Ba1-xKxFe2As2. Solid State Commun. 2010;150:1940. doi: 10.1016/j.ssc.2010.07.018
  • Barišić N, Chan MK, Veit MJ, et al. Hidden Fermi-liquid behavior throughout the phase diagram of the cuprates. arXiv:150707885.
  • Dahlqvist M, Alling B, Rosen J. Correlation between magnetic state and bulk modulus of Cr2AlC. J Appl Phys. 2013;113:216103. doi: 10.1063/1.4808239
  • Halim J, Cook KM, Naguib M, et al. X-ray photoelectron spectroscopy of Two-dimensional transition metal carbides (MXenes). Appl Surf Sci. 2016;362:406–417. doi: 10.1016/j.apsusc.2015.11.089
  • Ghidiu M, Halim J, Kota S, et al. Ion exchange and solvation reactions in 2D Ti3C2 MXene. Chem Mater. 2016;28:3507–3514. doi: 10.1021/acs.chemmater.6b01275
  • Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metal carbides (MXenes). ACS Nano. 2015;9:9507–9516. doi: 10.1021/acsnano.5b03591
  • Halim J, Kota S, Lukatskaya M, et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater. 2016;26:3118–3127. doi: 10.1002/adfm.201505328
  • Anasori B, Shi C, Moon EJ, et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizon. 2016;1:227–234. doi: 10.1039/C5NH00125K
  • Halim J, Lukatskaya M, Cook KM, et al. Transparent conductive two-dimensional titanium carbide thin filims. Chem Mater. 2014;26:2374–2381. doi: 10.1021/cm500641a
  • Dillon AD, Ghidiu M, Krick A, et al. Highly-conductive, optical-quality films from solution-processed 2D titanium carbide (MXene). Adv Funct Mater. 2016;26:4162–4168. doi: 10.1002/adfm.201600357
  • Miranda A, Halim J, Barsoum MW, et al. Electronic properties of freestanding Ti3C2Tx MXene monolayers. App Phys Lett. 2016;108:033102. doi: 10.1063/1.4939971
  • Lipatov A, Alhabeb M, Lukatskaya MR, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater. 2016;2:1600255. doi: 10.1002/aelm.201600255
  • Lai S, Jeon J, Jang SK, et al. Surface group modification and carrier transport property of layered transition metal carbides (Ti2CTx, T: -OH, -F and –O). Nanoscale. 2015;7:19390–19396. doi: 10.1039/C5NR06513E
  • Miranda A, Halim J, Lorke A, et al. Rendering Ti3C2Tx (MXene) monolayers visible. Mater Res Lett. 2017; http://dx.doi.org/10.1080/21663831.2017.1280707.
  • Hu T, Zhang H, Wang J, et al. Anisotropic electronic conduction in stacked two-dimensional titanium carbide. Sci Rep. 2015;5:16329. doi: 10.1038/srep16329
  • Ying G, Dillon AD, Fafarman AT, et al. Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Mater Res Lett. 2017; doi:10.1080/21663831.2017.1296043
  • De S, Coleman JN. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano. 2010;4:2713–2720. doi: 10.1021/nn100343f
  • Hantanasirisakul K, Zhao MQ, Urbankowski P, et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater. 2016;2:1600050. doi: 10.1002/aelm.201600050
  • Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016;353:1137–1140. doi: 10.1126/science.aag2421
  • Mariano M, Mashtalir O, Antonio FQ, et al. Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale. 2016;8:16371–16378. doi: 10.1039/C6NR03682A
  • Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mat. 2013;23:2185–2192. doi: 10.1002/adfm.201202502
  • Xie Y, Kent PRC. Hybrid density functional study of structural and electronic properties of functionalized Tin + 1Xn (X = C, N) monolayers. Phys Rev B. 2013;87:235441. doi: 10.1103/PhysRevB.87.235441
  • Enyashin AN, Ivanovskii AL. Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes. Comp Theor Chem. 2012;989:27–32. doi: 10.1016/j.comptc.2012.02.034
  • Enyashin AN, Ivanovskii AL. 2D titanium carbonitrides and their hydroxylated derivatives: structural, electronic properties and stability of MXenes Ti3C2-xNx and Ti3C2-xNx(OH)2. J Solid State Chem. 2013;207:42–48. doi: 10.1016/j.jssc.2013.09.010
  • Zha XH, Luo K, Li QW, et al. Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. Europhys Lett. 2015;111:6. doi: 10.1209/0295-5075/111/26007
  • Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li Ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Amer Chem Soc. 2012;134:16909–16916. doi: 10.1021/ja308463r
  • Khazaei M, Ranjbar A, Arai M, et al. Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C. 2017;5:2488. doi: 10.1039/C7TC00140A
  • Harrison W. Elementary electronic structure. Singapore: World Scientific; Singapore 2011.
  • Sang X, Xie Y, Lin M-W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano; 2016;10:9193–200.
  • Gruber J, Lang A, Griggs J, et al. Evidence for bulk ripplocations in layered solids. Sci Rep. 2016;6:33451. doi: 10.1038/srep33451