35,932
Views
764
CrossRef citations to date
0
Altmetric
Perspective

Heterogeneous materials: a new class of materials with unprecedented mechanical properties

&
Pages 527-532 | Received 27 May 2017, Published online: 26 Jun 2017

References

  • Valiev RZ, Alexandrov IV, Zhu YT, et al. Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res. 2002;17:5–8. doi: 10.1557/JMR.2002.0002
  • Zhu YT, Liao XZ. Nanostructured metals – retaining ductility. Nature Mater. 2004;3:351–352. doi: 10.1038/nmat1141
  • Jia D, Wang YM, Ramesh KT, et al. Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl Phys Lett. 2001;79:611–613. doi: 10.1063/1.1384000
  • Zhao YH, Liao XZ, Horita Z, et al. Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys. Mater Sci Eng A. 2008;493:123–129. doi: 10.1016/j.msea.2007.11.074
  • Zhao YH, Bingert JF, Zhu YT, et al. Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Appl Phys Lett. 2008;92:081903. doi: 10.1063/1.2870014
  • Zhao YH, Zhu YT, Liao XZ, et al. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl Phys Lett. 2006;89:121906. doi: 10.1063/1.2356310
  • Wang YM, Ma E, Valiev RZ, et al. Tough nanostructured metals at cryogenic temperatures. Adv Mater. 2004;16:328–331. doi: 10.1002/adma.200305679
  • Zhao YH, Bingert JE, Liao XZ, et al. Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv Mater. 2006;18:2949–2952. doi: 10.1002/adma.200601472
  • Zhao YH, Liao XZ, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater. 2006;18:2280–2283. doi: 10.1002/adma.200600310
  • Zhao YH, Topping T, Bingert JF, et al. High tensile ductility and strength in bulk nanostructured nickel. Adv Mater. 2008;20:3028–3033. doi: 10.1002/adma.200800214
  • Cheng S, Zhao YH, Zhu YT, et al. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 2007;55:5822–5832. doi: 10.1016/j.actamat.2007.06.043
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61:782–817. doi: 10.1016/j.actamat.2012.10.038
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556. doi: 10.1016/j.pmatsci.2005.08.003
  • Lu L, Zhu T, Shen YF, et al. Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper. Acta Mater. 2009;57:5165–5173. doi: 10.1016/j.actamat.2009.07.018
  • Wang YM, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 2004;52:1699–1709. doi: 10.1016/j.actamat.2003.12.022
  • Yan FK, Liu GZ, Tao NR, et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Mater. 2012;60:1059–1071. doi: 10.1016/j.actamat.2011.11.009
  • Youssef K, Sakaliyska M, Bahmanpour H, et al. Effect of stacking fault energy on mechanical behavior of bulk nanocrystalline Cu and Cu alloys. Acta Mater. 2011;59:5758–5764. doi: 10.1016/j.actamat.2011.05.052
  • An XH, Han WZ, Huang CX, et al. High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys. Appl Phys Lett. 2008;92:201915. doi: 10.1063/1.2936306
  • Zhang X, Wang H, Scattergood RO, et al. Tensile elongation (110%) observed in ultrafine-grained Zn at room temperature. Appl Phys Lett. 2002;81:823–825. doi: 10.1063/1.1494866
  • Huang XX, Kamikawa N, Hansen N. Increasing the ductility of nanostructured Al and Fe by deformation. Mater Sci Eng A. 2008;493:184–189. doi: 10.1016/j.msea.2007.04.131
  • Wang GY, Li GY, Zhao L, et al. The origin of the ultrahigh strength and good ductility in nanotwinned copper. Mater Sci Eng A. 2010;527:4270–4274. doi: 10.1016/j.msea.2010.03.076
  • Lu L, Shen YF, Chen XH, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426. doi: 10.1126/science.1092905
  • An XH, Wu SD, Zhang ZF, et al. Enhanced strength-ductility synergy in nanostructured Cu and Cu-Al alloys processed by high-pressure torsion and subsequent annealing. Scr Mater. 2012;66:227–230. doi: 10.1016/j.scriptamat.2011.10.043
  • Xiao GH, Tao NR, Lu K. Strength-ductility combination of nanostructured Cu-Zn alloy with nanotwin bundles. Scr Mater. 2011;65:119–122. doi: 10.1016/j.scriptamat.2011.03.005
  • Wang YM, Chen MW, Zhou FH, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419:912–915. doi: 10.1038/nature01133
  • Zhu YT, Lowe TC, Langdon TG. Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Mater. 2004;51:825–830. doi: 10.1016/j.scriptamat.2004.05.006
  • Lu K. Making strong nanomaterials ductile with gradients. Science. 2014;345:1455–1456. doi: 10.1126/science.1255940
  • Wu XL, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA. 2014;111:7197–7201. doi: 10.1073/pnas.1324069111
  • Wu XL, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2:185–191. doi: 10.1080/21663831.2014.935821
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590. doi: 10.1126/science.1200177
  • Chen AY, Liu JB, Wang HT, et al. Gradient twinned 304 stainless steels for high strength and high ductility. Mater Sci Eng A. 2016;667:179–188. doi: 10.1016/j.msea.2016.04.070
  • Wei YJ, Li YQ, Zhu LC, et al. Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun. 2014;5:3580.
  • Wu XL, Yang MX, Yuan FP, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112:14501–14505.
  • Han BQ, Huang JY, Zhu YT, et al. Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys. Acta Mater. 2006;54:3015–3024. doi: 10.1016/j.actamat.2006.02.045
  • Han BQ, Lee Z, Witkin D, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys. Metall Mater Trans A. 2005;36:957–965. doi: 10.1007/s11661-005-0289-7
  • Sawangrat C, Kato S, Orlov D, et al. Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders. J Mater Sci. 2014;49:6579–6585. doi: 10.1007/s10853-014-8258-4
  • Zhang Z, Vajpai SK, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics. Mater Sci Eng. 2014;598:106–113. doi: 10.1016/j.msea.2014.01.023
  • Vajpai SK, Ota M, Watanabe T, et al. The development of high performance Ti-6Al-4V alloy via a unique microstructural design with bimodal grain size distribution. Metall Mater Trans A. 2015;46:903–914. doi: 10.1007/s11661-014-2649-7
  • Ma XL, Huang CX, Moering J, et al. Mechanical properties in copper/bronze laminates: role of interfaces. Acta Mater. 2016;116:43–52. doi: 10.1016/j.actamat.2016.06.023
  • Beyerlein IJ, Mayeur JR, Zheng SJ, et al. Emergence of stable interfaces under extreme plastic deformation. Proc Natl Acad Sci USA. 2014;111:4386–4390. doi: 10.1073/pnas.1319436111
  • Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011;59:658–670. doi: 10.1016/j.actamat.2010.10.002
  • Li ZM, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227–231. doi: 10.1038/nature18453
  • Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater Sci Eng. 2014;604:135–141. doi: 10.1016/j.msea.2014.02.058
  • Wu XL, Yuan FP, Yang MX, et al. Nanodomained nickel unite nanocrystal strength with coarse-grain ductility. Sci Rep. 2015;5:11728. doi: 10.1038/srep11728
  • Lu K, Yan FK, Wang HT, et al. Strengthening austenitic steels by using nanotwinned austenitic grains. Scr Mater. 2012;66:878–883. doi: 10.1016/j.scriptamat.2011.12.044
  • Li YS, Tao NR, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 2008;56:230–241. doi: 10.1016/j.actamat.2007.09.020
  • Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017; doi: 10.1016/j.mattod.2017.02.003 
  • Yang MX, Pan Y, Yuan FP, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151. doi: 10.1080/21663831.2016.1153004
  • Cong ZH, Jia N, Sun X, et al. Stress and strain partitioning of ferrite and martensite during deformation. Metall Mater Trans A. 2009;40:1383–1387. doi: 10.1007/s11661-009-9824-2
  • Tasan CC, Diehl M, Yan D, et al. Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater. 2014;81:386–400. doi: 10.1016/j.actamat.2014.07.071
  • Han QH, Asgari A, Hodgson PD, et al. Strain partitioning in dual-phase steels containing tempered martensite. Mater Sci Eng. 2014;611:90–99. doi: 10.1016/j.msea.2014.05.078
  • Wang MM, Tasan CC, Ponge D, et al. Nanolaminate transformation- induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater. 2015;85:216–228. doi: 10.1016/j.actamat.2014.11.010
  • Yang MX, Yuan FP, Xie QG, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel. Acta Mater. 2016;109:213–222. doi: 10.1016/j.actamat.2016.02.044
  • Gao H, Huang Y, Nix WD, et al. Mechanism-based strain gradient plasticity – I. Theory. J Mech Phys Solids. 1999;47:1239–1263. doi: 10.1016/S0022-5096(98)00103-3
  • Gao HJ, Huang YG. Geometrically necessary dislocation and size-dependent plasticity. Scr Mater. 2003;48:113–118. doi: 10.1016/S1359-6462(02)00329-9
  • Ashby MF. Deformation of plastically non-homogeneous materials. Philos Mag. 1970;21:399–424. doi: 10.1080/14786437008238426
  • Murr LE. Dislocation ledge sources: dispelling the myth of frank-read source importance. Metall Mater Trans A. 2016;47:5811–5826. doi: 10.1007/s11661-015-3286-5
  • Kato H, Moat R, Mori T, et al. Back stress work hardening confirmed by Bauschinger effect in a TRIP steel using bending tests. ISIJ Int. 2014;54:1715–1718. doi: 10.2355/isijinternational.54.1715