1,934
Views
7
CrossRef citations to date
0
Altmetric
Original Report

‘Unzipping’ of twin lamella in nanotwinned nickel nanowires under flexural bending

, , & ORCID Icon
Pages 13-21 | Received 08 Jul 2017, Published online: 19 Oct 2017

References

  • Venables J. Introduction to surface and thin film processes. Cambridge: Cambridge University Press; 2000.
  • Freund LB, Suresh S. Thin film materials: stress, defect formation and surface evolution. Cambridge: Cambridge University Press; 2004.
  • Wu B, Heidelberg A, Boland JJ. Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater. 2005;4(7):525–529. doi: 10.1038/nmat1403
  • Feng G, Nix WD, Yoon Y, et al. A study of the mechanical properties of nanowires using nanoindentation. J Appl Phys. 2006;99(7):074304. doi: 10.1063/1.2189020
  • Mei QS, Lu K. Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog Mater Sci. 2007;52(8):1175–1262. doi: 10.1016/j.pmatsci.2007.01.001
  • Ou MN, Yang TJ, Harutyunyan SR, et al. Electrical and thermal transport in single nickel nanowire. Appl Phys Lett. 2008;92(6):063101. doi: 10.1063/1.2839572
  • Tian P. Molecular dynamics simulations of nanoparticles. Annual Reports Section ‘C’ (Physical Chemistry). 2008;104(0):142–164. doi: 10.1039/b703897f
  • Zhang H, Tersoff J, Xu S, et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci Adv. 2016;2(8):e1501382. doi: 10.1126/sciadv.1501382
  • Zhang H, Fung K-Y, Zhuang Y, et al. Fracture of silicon nanowire at ultra-large elastic strain. Acta Mechanica; Forthcoming 2017.
  • Wei YJ. Anisotropic size effect in strength in coherent nanowires with tilted twins. Phys Rev B. 2011;84(1):014107. doi: 10.1103/PhysRevB.84.014107
  • Li SZ, Ding XD, Deng JK, et al. Superelasticity in bcc nanowires by a reversible twinning mechanism. Phys Rev B. 2010;82(20):205435. doi: 10.1103/PhysRevB.82.205435
  • Yu Q, Shan ZW, Li J, et al. Strong crystal size effect on deformation twinning. Nature. 2010;463(7279):335–338. doi: 10.1038/nature08692
  • Wang J, Sansoz F, Huang J, et al. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat Commun. 2013;4:1742. doi: 10.1038/ncomms2768
  • Lu Y, Song J, Huang JY, et al. Fracture of Sub-20nm ultrathin gold nanowires. Adv Funct Mater. 2011;21(20):3982–3989. doi: 10.1002/adfm.201101224
  • Jang D, Li X, Gao H, et al. Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotechnol. 2012;7(9):594–601. doi: 10.1038/nnano.2012.116
  • Chen M, Ma E, Hemker KJ, et al. Deformation twinning in nanocrystalline aluminum. Science. 2003;300(5623):1275–1277. doi: 10.1126/science.1083727
  • Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304(5669):422–426. doi: 10.1126/science.1092905
  • Shen YF, Lu L, Lu QH, et al. Tensile properties of copper with nano-scale twins. Scr Mater. 2005;52(10):989–994. doi: 10.1016/j.scriptamat.2005.01.033
  • Zhu YT, Liao XZ, Srinivasan SG, et al. Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. J Appl Phys. 2005;98(3):034319. doi: 10.1063/1.2006974
  • Wu X, Zhu YT, Chen MW, et al. Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scr Mater. 2006;54(9):1685–1690. doi: 10.1016/j.scriptamat.2005.12.045
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in bulk nanocrystalline metals: experimental observations. JOM. 2008;60(9):60–64. doi: 10.1007/s11837-008-0120-1
  • Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science. 2009;323(5914):607–610. doi: 10.1126/science.1167641
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324(5925):349–352. doi: 10.1126/science.1159610
  • Zhu YT, Wu XL, Liao XZ, et al. Twinning partial multiplication at grain boundary in nanocrystalline FCC metals. Appl Phys Lett. 2009;95(3):031909. doi: 10.1063/1.3187539
  • Li X, Wei Y, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature. 2010;464(7290):877–880. doi: 10.1038/nature08929
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57(1):1–62. doi: 10.1016/j.pmatsci.2011.05.001
  • Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12(8):697–702. doi: 10.1038/nmat3646
  • Wu F, Zhu YT, Narayan J. Macroscopic twinning strain in nanocrystalline Cu. Mater Res Lett. 2014;2(2):63–69. doi: 10.1080/21663831.2013.862874
  • Wang LH, Lu Y, Kong DL, et al. Dynamic and atomic-scale understanding of the twin thickness effect on dislocation nucleation and propagation activities by in situ bending of Ni nanowires. Acta Mater. 2015;90:194–203. doi: 10.1016/j.actamat.2015.02.002
  • Li XY, Dao M, Eberl C, et al. Fracture, fatigue, and creep of nanotwinned metals. MRS Bull. 2016;41(4):298–304. doi: 10.1557/mrs.2016.65
  • Li N, Wang JW, Mao S, et al. In situ nanomechanical testing of twinned metals in a transmission electron microscope. MRS Bull. 2016;41(4):305–313. doi: 10.1557/mrs.2016.66
  • Furnish TA, Hodge AM. On the mechanical performance and deformation of nanotwinned Ag. APL Mater. 2014;2(4):046112. doi: 10.1063/1.4873215
  • Qin Q, Yin S, Cheng G, et al. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat Commun. 2015;6:5983. doi: 10.1038/ncomms6983
  • Chang TH, Cheng GM, Li CJ, et al. On the size-dependent elasticity of penta-twinned silver nanowires. Extreme Mech Lett. 2016;8:177–183. doi: 10.1016/j.eml.2016.03.007
  • Cui Y, Zhong ZH, Wang DL, et al. High performance silicon nanowire field effect transistors. Nano Lett. 2003;3(2):149–152. doi: 10.1021/nl025875l
  • Snider GS, Williams RS. Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology. 2007;18(3):035204. doi: 10.1088/0957-4484/18/3/035204
  • Lee J, Lee P, Lee H, et al. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale. 2012;4(20):6408–6414. doi: 10.1039/c2nr31254a
  • Wang JG, Tian ML, Mallouk TE, et al. Microtwinning in template-synthesized single-crystal metal nanowires. J Phys Chem B. 2004;108(3):841–845. doi: 10.1021/jp035068q
  • Bernardi M, Raja SN, Lim SK. Nanotwinned gold nanowires obtained by chemical synthesis. Nanotechnology. 2010;21(28):285607. doi: 10.1088/0957-4484/21/28/285607
  • Lu Y, Peng C, Ganesan Y, et al. Quantitative in situ TEM tensile testing of an individual nickel nanowire. Nanotechnology. 2011;22(35):355702. doi: 10.1088/0957-4484/22/35/355702
  • Zhang L, Petit T, Lu Y, et al. Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano. 2010;4(10):6228–6234. doi: 10.1021/nn101861n
  • Zhang H, Jiang C, Lu Y. Low-Cycle fatigue testing of Ni nanowires based on a micro-mechanical device. Exp Mech. 2017;57(3):495–500. doi: 10.1007/s11340-016-0199-1
  • Peng C, Ganesan Y, Lu Y, et al. Size dependent mechanical properties of single crystalline nickel nanowires. J Appl Phys. 2012;111(6):063524. doi: 10.1063/1.3698625
  • Peng C, Zhong Y, Lu Y, et al. Strain rate dependent mechanical properties in single crystal nickel nanowires. Appl Phys Lett. 2013;102(8):083102. doi: 10.1063/1.4793481
  • Carter C, Holmes S. The stacking-fault energy of nickel. Philos Mag. 1977;35(5):1161–1172. doi: 10.1080/14786437708232942
  • Deng C, Sansoz F. Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni. Acta Mater. 2009;57(20):6090–6101. doi: 10.1016/j.actamat.2009.08.035
  • Deng C, Sansoz F. A new form of pseudo-elasticity in small-scale nanotwinned gold. Extreme Mech Lett. 2016;8:201–207. doi: 10.1016/j.eml.2015.12.004
  • Cao AJ, Wei YG, Mao SX. Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Appl Phys Lett. 2007;90(15):151909. doi: 10.1063/1.2721367
  • Deng C, Sansoz F. Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires. Nano Lett. 2009;9(4):1517–1522. doi: 10.1021/nl803553b
  • Frøseth AG, Derlet PM, Van Swygenhoven H. Twinning in nanocrystalline FCC metals. Adv Eng Mater. 2005;7(1-2):16–20. doi: 10.1002/adem.200400163
  • Shetty M. Dislocations and mechanical behaviour of materials. Delhi: PHI Learning Pvt. Ltd.; 2013.
  • Shan ZW, Wiezorek JMK, Stach EA, et al. Dislocation dynamics in nanocrystalline nickel. Phys. Rev Lett. 2007;98(9):095502. doi: 10.1103/PhysRevLett.98.095502
  • Yu Q, Qi L, Chen K, et al. The nanostructured origin of deformation twinning. Nano Lett. 2012;12(2):887–892. doi: 10.1021/nl203937t
  • Sun J, He L, Lo YC, et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat Mater. 2014;13(11):1007–1012. doi: 10.1038/nmat4105
  • Liu B-Y, Wang J, Li B, et al. Twinning-like lattice reorientation without a crystallographic twinning plane. Nat Commun. 2014;5:3297.
  • Yu Q, Legros M, Minor AM. In situ TEM nanomechanics. MRS Bull. 2015;40(01):62–70. doi: 10.1557/mrs.2014.306
  • Wang J, Zeng Z, Weinberger CR, et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat Mater. 2015;14(6):594–600. doi: 10.1038/nmat4228
  • Ramachandramoorthy R, Bernal R, Espinosa HD. Pushing the envelope of In situ transmission electron micro-scopy. ACS Nano. 2015;9(5):4675–4685. doi: 10.1021/acsnano.5b01391
  • Zhang Z, Sheng H, Wang Z, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat Commun. 2017;8:14390. doi: 10.1038/ncomms14390
  • Zheng K, Wang C, Cheng YQ, et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat Commun. 2010;1:24.
  • Liu L, Wang J, Gong SK, et al. Atomistic observation of a crack tip approaching coherent twin boundaries. Sci Rep. 2015;4:4397. doi: 10.1038/srep04397
  • Mishin Y, Farkas D, Mehl MJ, et al. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B. 1999;59(5):3393–3407. doi: 10.1103/PhysRevB.59.3393
  • Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci. 1994;2(2):279–286. doi: 10.1016/0927-0256(94)90109-0
  • Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell Simul Mater Sci Eng. 2010;18(8):085001. doi: 10.1088/0965-0393/18/8/085001
  • Lee S, Im J, Yoo Y, et al. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nat Commun. 2014;5:3033.
  • Ayachit U. The paraview guide: a parallel visualization application. New York: Kitware; 2015.
  • Lu Y, Song J, Huang J, et al. Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res. 2011;4(12):1261–1267. doi: 10.1007/s12274-011-0177-y
  • Roos B, Kapelle B, Richter G, et al. Surface dislocation nucleation controlled deformation of Au nanowires. Appl Phys Lett. 2014;105(20):201908. doi: 10.1063/1.4902313
  • Wei Y, Li Y, Zhu L, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun. 2014;5:3580.