3,397
Views
40
CrossRef citations to date
0
Altmetric
Original Report

Nanoindentation creep behavior of Cu–Zr metallic glass films

, , , , ORCID Icon &
Pages 22-28 | Received 12 Aug 2017, Published online: 19 Oct 2017

References

  • Schuh C, Hufnagel T, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater. 2007;55:4067–4109. doi: 10.1016/j.actamat.2007.01.052
  • Greer JR, De Hosson JTM. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci. 2011;56:654–724. doi: 10.1016/j.pmatsci.2011.01.005
  • Sun BA, Wang WH. The fracture of bulk metallic glasses. Prog Mater Sci. 2015;74:211–307. doi: 10.1016/j.pmatsci.2015.05.002
  • Eckert J, Das J, Pauly S, et al. Mechanical properties of bulk metallic glasses and composites. J Mater Res. 2011;22:285–301. doi: 10.1557/jmr.2007.0050
  • Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Mater Sci Eng R. 2013;74:71–132. doi: 10.1016/j.mser.2013.04.001
  • Trexler MM, Thadhani NN. Mechanical properties of bulk metallic glasses. Prog Mater Sci. 2010;55:759–839. doi: 10.1016/j.pmatsci.2010.04.002
  • Lu XL, Li Y, Lu L. Co-existence of homogeneous flow and localized plastic deformation in tension of amorphous Ni–P films on ductile substrate. Acta Mater. 2016;106:182–192. doi: 10.1016/j.actamat.2016.01.001
  • Wang YQ, Zhang JY, Liang XQ, et al. Size- and constituent-dependent deformation mechanisms and strain rate sensitivity in nanolaminated crystalline Cu/amorphous Cu-Zr films. Acta Mater. 2015;95:132–144. doi: 10.1016/j.actamat.2015.05.007
  • Ma Y, Cao QP, Qu SX, et al. Effect of structural relaxation on plastic flow in a Ni-Nb metallic glassy film. Acta Mater. 2012;60:3667–3676. doi: 10.1016/j.actamat.2012.03.014
  • Jiang QK, Liu P, Cao QP, et al. The effect of size on the elastic strain limit in Ni60Nb40 glassy films. Acta Mater. 2013;61:4689–4695. doi: 10.1016/j.actamat.2013.04.053
  • Ghidelli M, Gravier S, Blandin J-J, et al. Size-dependent failure mechanisms in ZrNi thin metallic glass films. Scr Mater. 2014;89:9–12. doi: 10.1016/j.scriptamat.2014.06.011
  • Cao Z, Zhang X. Nanoindentation creep of plasma-enhanced chemical vapor deposited silicon oxide thin films. Scr Mater. 2007;56:249–252. doi: 10.1016/j.scriptamat.2006.09.022
  • Ma Y, Peng GJ, Debela TT, et al. Nanoindentation study on the characteristic of shear transformation zone volume in metallic glassy films. Scr Mater. 2015;108:52–55. doi: 10.1016/j.scriptamat.2015.05.043
  • Argon AS. Plastic deformation in metallic glasses. Acta Metall. 1979;27:47–58. doi: 10.1016/0001-6160(79)90055-5
  • Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977;25:407–415. doi: 10.1016/0001-6160(77)90232-2
  • Lucas BN, Oliver WC. Indentation power-law creep of high-purity indium. Metall Mat Trans A. 1999;30:601–610. doi: 10.1007/s11661-999-0051-7
  • Li H, Ngan AHW. Size effects of nanoindentation creep. J Mater Res. 2004;19:513–522. doi: 10.1557/jmr.2004.19.2.513
  • Van Steenberge N, Sort J, Concustell A, et al. Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy. Scr Mater. 2007;56:605–608. doi: 10.1016/j.scriptamat.2006.12.014
  • Cao ZH, Lu HM, Meng XK, et al. Indentation size dependent plastic deformation of nanocrystalline and ultrafine grain Cu films at nanoscale. J Appl Phys. 2009;105:083521. doi: 10.1063/1.3110087
  • Chou HS, Huang JC, Chang LW, et al. Structural relaxation and nanoindentation response in Zr-Cu-Ti amorphous thin films. Appl Phys Lett. 2008;93:191901. doi: 10.1063/1.2999592
  • Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1998;46:411–425. doi: 10.1016/S0022-5096(97)00086-0
  • Tymiak NI, Kramer DE, Bahr DF, et al. Plastic strain and strain gradients at very small indentation depths. Acta Mater. 2001;49:1021–1034. doi: 10.1016/S1359-6454(00)00378-5
  • Limbach R, Rodrigues BP, Wondraczek L. Strain-rate sensitivity of glasses. J Non-Cryst Solids. 2014;404:124–134. doi: 10.1016/j.jnoncrysol.2014.08.023
  • Ma W, Kou H, Li J, et al. Effect of strain rate on compressive behavior of Ti-based bulk metallic glass at room temperature. J Alloy Compd. 2009;472:214–218. doi: 10.1016/j.jallcom.2008.04.043
  • Dalla Torre FH, Dubach A, Siegrist ME, et al. Negative strain rate sensitivity in bulk metallic glass and its similarities with the dynamic strain aging effect during deformation. Appl Phys Lett. 2006;89:091918. doi: 10.1063/1.2234309
  • Zhang J, Park JM, Kim DH, et al. Effect of strain rate on compressive behavior of Ti45Zr16Ni9Cu10Be20 bulk metallic glass. Mater Sci Eng A. 2007;449–451:290–294. doi: 10.1016/j.msea.2006.02.405
  • Liu FX, Gao YF, Liaw PK. Rate-dependent deformation behavior of Zr-based metallic-glass coatings examined by nanoindentation. Metall Mat Trans A. 2008;39:1862–1867. doi: 10.1007/s11661-007-9399-8
  • Pan D, Inoue A, Sakurai T, et al. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc Natl Acad Sci USA. 2008;105:14769–14772. doi: 10.1073/pnas.0806051105
  • Johnson W, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys Rev Lett. 2005;95:195501. doi: 10.1103/PhysRevLett.95.195501