1,611
Views
5
CrossRef citations to date
0
Altmetric
Original Report

Stability of suspended monolayer graphene membranes in alkaline environment

&
Pages 49-54 | Received 20 Jun 2017, Published online: 23 Oct 2017

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669. doi: 10.1126/science.1102896
  • Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys. 2009;81(1):109–162. doi: 10.1103/RevModPhys.81.109
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–191. doi: 10.1038/nmat1849
  • Katsnelson MI. Graphene: carbon in two dimensions. Mater Today. 2007;10(1):20–27. doi: 10.1016/S1369-7021(06)71788-6
  • Bolotin KI, Sikes KJ, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146(9–10):351–355. doi: 10.1016/j.ssc.2008.02.024
  • Chen S, Moore AL, Cai W, et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano. 2011;5(1):321–328. doi: 10.1021/nn102915x
  • Lee J-U, Yoon D, Kim H, et al. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys Rev B. 2011;83(8):081419. doi: 10.1103/PhysRevB.83.081419
  • Cai W, Moore AL, Zhu Y, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010;10(5):1645–1651. doi: 10.1021/nl9041966
  • Lau CN, Bao W, Velasco J. Properties of suspended graphene membranes. Mater Today. 2012;15(6):238–245. doi: 10.1016/S1369-7021(12)70114-1
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388. doi: 10.1126/science.1157996
  • Frank IW, Tanenbaum DM, van der Zande AM, et al. Mechanical properties of suspended graphene sheets. J Vac Sci Technol B Microelectron Nanometer Struct. 2007;25(6):2558. doi: 10.1116/1.2789446
  • Cheng Z, Li Q, Li Z, et al. Suspended graphene sensors with improved signal and reduced noise. Nano Lett. 2010;10(5):1864–1868. doi: 10.1021/nl100633g
  • Sidorenko A, Krupenkin T, Taylor A, et al. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science. 2007;315(5811):487–490. doi: 10.1126/science.1135516
  • van der Zande AM, Barton RA, Alden JS, et al. Large-scale arrays of single-layer graphene resonators. Nano Lett. 2010;10(12):4869–4873. doi: 10.1021/nl102713c
  • Chen C, Rosenblatt S, Bolotin KI, et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotechnol. 2009;4(12):861–867. doi: 10.1038/nnano.2009.267
  • Schedin F, Geim AK, Morozov SV, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652–655. doi: 10.1038/nmat1967
  • Khan ZH, Kermany AR, Öchsner A, et al. Mechanical and electromechanical properties of graphene and their potential application in MEMS. J Phys Appl Phys. 2017;50(5):053003. doi: 10.1088/1361-6463/50/5/053003
  • Eom K, Park HS, Yoon DS, et al. Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys Rep. 2011;503(4–5):115–163. doi: 10.1016/j.physrep.2011.03.002
  • Patel RN, Mathew JP, Borah A, et al. Low tension graphene drums for electromechanical pressure sensing. 2D Mater. 2016;3(1):011003. doi: 10.1088/2053-1583/3/1/011003
  • Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotechnol. 2008;3(8):491–495. doi: 10.1038/nnano.2008.199
  • Rickhaus P, Maurand R, Liu M-H, et al. Ballistic interferences in suspended graphene. Nat Commun. 2013;4:2342. doi: 10.1038/ncomms3342
  • Jang H, Park YJ, Chen X, et al. Graphene-based flexible and stretchable electronics. Adv Mater. 2016;28(22):4184–4202. doi: 10.1002/adma.201504245
  • Wang X, Shi G. Flexible graphene devices related to energy conversion and storage. Energy Env Sci. 2015;8(3):790–823. doi: 10.1039/C4EE03685A
  • Köhler JM. Etching in microsystem technology. Weinheim (NY): Wiley-VCH; 1999. p. 368.
  • Seidel H, Csepregi L, Heuberger A, et al. Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J Electrochem Soc. 1990;137(11):3612–3626. doi: 10.1149/1.2086277
  • Sordan R, Miranda A, Traversi F, et al. Vertical arrays of nanofluidic channels fabricated without nanolithography. Lab Chip. 2009;9(11):1556. doi: 10.1039/b819520j
  • Dahiya R, Gottardi G, Laidani N. PDMS residues-free micro/macrostructures on flexible substrates. Microelectron Eng. 2015;136:57–62. doi: 10.1016/j.mee.2015.04.037
  • Maji D, Lahiri SK, Das S. Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution. Surf Interface Anal. 2012;44(1):62–69. doi: 10.1002/sia.3770
  • Samsure NA, Hashim NA, Nik Sulaiman NM, et al. Alkaline etching treatment of PVDF membrane for water filtration. RSC Adv. 2016;6(26):22153–22160. doi: 10.1039/C6RA00124F
  • Chen Y, Zhang X, Zhang H, et al. High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation. RSC Adv. 2012;2(20):7747. doi: 10.1039/c2ra20667f
  • Xu B, Yue S, Sui Z, et al. What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ Sci. 2011;4(8):2826. doi: 10.1039/c1ee01198g
  • Zhou M, Tian T, Li X, et al. Supercapacitance of chemically converted graphene with composite pores. Chem Phys Lett. 2013;581:64–69. doi: 10.1016/j.cplett.2013.06.063
  • Li Y, van Zijll M, Chiang S, et al. KOH modified graphene nanosheets for supercapacitor electrodes. J Power Sources. 2011;196(14):6003–6006. doi: 10.1016/j.jpowsour.2011.02.092
  • Nair RR, Blake P, Blake JR, et al. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl Phys Lett. 2010;97(15):153102. doi: 10.1063/1.3492845
  • Kim YD, Kim H, Cho Y, et al. Bright visible light emission from graphene. Nat Nanotechnol. 2015;10(8):676–681. doi: 10.1038/nnano.2015.118
  • Miranda A, Halim J, Barsoum MW, et al. Electronic properties of freestanding Ti3C2Tx MXene monolayers. Appl Phys Lett. 2016;108(3):033102. doi: 10.1063/1.4939971
  • Sommer B, Sonntag J, Ganczarczyk A, et al. Electron-beam induced nano-etching of suspended graphene. Sci Rep. 2015;5:7781. doi: 10.1038/srep07781
  • Sonntag J, Kurzmann A, Geller M, et al. Giant magneto-photoelectric effect in suspended graphene. New J Phys. 2017;19:063028. doi: 10.1088/1367-2630/aa739d
  • Ferrari AC, Meyer JC, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18):187401. doi: 10.1103/PhysRevLett.97.187401
  • Casiraghi C. Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys Status Solidi RRL – Rapid Res Lett. 2009;3(6):175–177. doi: 10.1002/pssr.200903135
  • Cançado LG, Jorio A, Ferreira EHM, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011;11(8):3190–3196. doi: 10.1021/nl201432g
  • Ryu S, Maultzsch J, Han MY, et al. Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano. 2011;5(5):4123–4130. doi: 10.1021/nn200799y
  • Yan J, Fuhrer MS. Correlated charged impurity scattering in graphene. Phys Rev Lett. 2011;107(20):206601. doi: 10.1103/PhysRevLett.107.206601
  • Chen J-H, Jang C, Adam S, et al. Charged-impurity scattering in graphene. Nat Phys. 2008;4(5):377–381. doi: 10.1038/nphys935
  • Moser J, Barreiro A, Bachtold A. Current-induced cleaning of graphene. Appl Phys Lett. 2007;91(16):163513. doi: 10.1063/1.2789673
  • Dorgan VE, Behnam A, Conley HJ, et al. High-field electrical and thermal transport in suspended graphene. Nano Lett. 2013;13(10):4581–4586. doi: 10.1021/nl400197w
  • Kim S, Nah J, Jo I, et al. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl Phys Lett. 2009;94(6):062107. doi: 10.1063/1.3077021