2,278
Views
130
CrossRef citations to date
0
Altmetric
Original Report

Achievement of a table-like magnetocaloric effect in the dual-phase ErZn2/ErZn composite

, , , &
Pages 67-71 | Received 01 Jul 2017, Published online: 25 Oct 2017

References

  • Gschneidner KA Jr, Pecharsky VK, Tsokol AO. Recent developments in magnetocaloric materials. Rep Prog Phys. 2005;68:1479–1539. doi: 10.1088/0034-4885/68/6/R04
  • Shen BG, Sun JR, Hu FX, et al. Recent progress in exploring magnetocaloric materials. Adv Mater. 2009;21:4545–4564. doi: 10.1002/adma.200901072
  • Moya X, Defay E, Heine V, et al. Too cool to work. Nature Phys. 2015;11:202–205. doi: 10.1038/nphys3271
  • Franco V, Blazquez JS, Ingale B, et al. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Ann Rev Mater Res. 2012;42:305–342. doi: 10.1146/annurev-matsci-062910-100356
  • Manosa L, Planes A, Acet M. Advanced materials for solid-state refrigeration. J Mater Chem A. 2013;1:4925–4936. doi: 10.1039/c3ta01289a
  • Li L-W. Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals. Chin Phys B. 2016;25:037502. doi: 10.1088/1674-1056/25/3/037502
  • Zimm C, Jastrab A, Sternberg A, et al. Description and performance of a near-room temperature magnetic refrigerator. Adv Cryogen Eng. 1998;43:1759–1766. doi: 10.1007/978-1-4757-9047-4_222
  • Smali A, Chahine R. Composite materials for Ericsson-like magnetic refrigeration cycle. J Appl Phys. 1997;81:824–829. doi: 10.1063/1.364166
  • Zhang Y, Hou L, Ren Z, et al. Magnetic properties and magnetocaloric effect in TmZnAl and TmAgAl compounds. J Alloys Compd. 2016;656:635–639. doi: 10.1016/j.jallcom.2015.10.026
  • Zhang YK, Guo D, Yang Y, et al. Magnetism and magnetocaloric effect in the RE2CuSi3 (RE = Dy and Ho) compounds. J Alloys Compd. 2017;702:546–550. doi: 10.1016/j.jallcom.2017.01.285
  • Yi YL, Li LW, Su KP, et al. Large magnetocaloric effect in a wide temperature range induced by two successive magnetic phase transitions in Ho2Cu2Cd compound. Intermetallics 2017;80:22–25. doi: 10.1016/j.intermet.2016.10.005
  • Yang Y, Zhang YK, Xu X, et al. Magnetic and magnetocaloric properties of the ternary cadmium based intermetallic compounds of Gd2Cu2Cd and Er2Cu2Cd. J Alloys Compd. 2017;692:665–669. doi: 10.1016/j.jallcom.2016.09.104
  • Li L, Niehaus O, Kersting M, et al. Reversible table-like magnetocaloric effect in Eu4PdMg over a very large temperature span. Appl Phys Lett. 2014;104:092416. doi: 10.1063/1.4867882
  • Zhang YK, Yang Y, Xu X, et al. Large reversible magnetocaloric effect in RE2Cu2In (RE = Er and Tm) and enhanced refrigerant capacity in its composite materials. J Phys D: Appl Phys. 2016;49:145002. doi: 10.1088/0022-3727/49/14/145002
  • Li G, Wang J, Cheng Z, et al. Large entropy change accompanying two successive magnetic phase transitions in TbMn2Si2 for magnetic refrigeration. Appl Phys Lett. 2015;106:182405. doi: 10.1063/1.4919895
  • Li LW, Yuan Y, Zhang Y, et al. Giant low field magnetocaloric effect and field-induced metamagnetic transition in TmZn. Appl Phys Lett. 2015;107:132401. doi: 10.1063/1.4932058
  • Li LW, Hu GH, Qi Y, et al. Hydrostatic pressure effect on magnetic phase transition and magnetocaloric effect of metamagnetic TmZn compound. Sci Rep. 2017;7:42908. doi: 10.1038/srep42908
  • Zhu ZJ, Pelton AD. Critical assessment and optimization of phase diagrams and thermodynamic properties of RE-Zn systems-part II- Y-Zn, Eu-Zn, Gd-Zn, Tb-Zn, Dy-Zn, Ho-Zn, Er-Zn, Tm-Zn, Yb-Zn and Lu-Zn. J Alloys Compd. 2015;641:261–271. doi: 10.1016/j.jallcom.2015.02.227
  • Kitai T. Anisotropic magnetic susceptibility and crystal field effect of RZn2 (R = Tb, Dy, Ho and Er). J Phys Soc Jpn. 1995;64:3403–3408. doi: 10.1143/JPSJ.64.3403
  • Morin P, Pierre J. Magnetocrystalline anisotropy of equiatomic rare earth-zinc compounds: DyZn and ErZn. Phys Status Solidi A. 1973;17:479–482. doi: 10.1002/pssa.2210170211
  • Buschow KHJ. Intermetallic compounds of rare-earth and 3d transition metals. Rep Prog Phys. 1997;40:1179–1256. doi: 10.1088/0034-4885/40/10/002
  • Gupta S, Rawat R, Duresh KG. Large field-induced magnetocaloric effect and magnetoresistance in ErNiSi. Appl Phys Lett. 2014;105:012403. doi: 10.1063/1.4887336
  • da Silva LM, dos Santos AO, Coelho AA, et al. Magnetic properties and magnetocaloric effect of the HoAgGa compound. Appl Phys Lett. 2013;103:162413. doi: 10.1063/1.4826440
  • Li L, Namiki T, Huo D, et al. Two successive magnetic transitions induced large refrigerant capacity in HoPdIn compound. Appl Phys Lett. 2013;103:222405. doi: 10.1063/1.4834815
  • Gupta S, Duresh KG. Giant low field magnetocaloric effect in soft ferromagnetic ErRuSi. Appl Phys Lett. 2013;102:022408. doi: 10.1063/1.4775690
  • Li L, Nishimura K, Hutchison WD, et al. Giant reversible magnetocaloric effect in ErMn2Si2 compound with a second order magnetic phase transition. Appl Phys Lett. 2012;100:152403. doi: 10.1063/1.4704155
  • Samanta T, Das I, Banerjee S. Giant magnetocaloric effect in antiferromagnetic ErRu2Si2 compound. Appl Phys Lett. 2007;91:152506. doi: 10.1063/1.2798594
  • Li LW, Nishimura K. Giant reversible magnetocaloric effect in antiferromagnetic superconductor Dy0.9Tm0.1Ni2B2C compound. Appl Phys Lett. 2009;95:132505. doi: 10.1063/1.3240399
  • Dong QY, Chen J, Shen J, et al. Magnetic properties and magnetocaloric effects in R3Ni2 (R = Ho and Er) compounds. Appl Phys Lett. 2011;99:132504. doi: 10.1063/1.3643142
  • Li L, Nishimura K, Yamane H. Giant reversible magnetocaloric effect in antiferromagnetic GdCo2B2 compound. Appl Phys Lett. 2009;94:102509. doi: 10.1063/1.3095660