2,046
Views
10
CrossRef citations to date
0
Altmetric
Original Report

Measurement of local crystal lattice strain variations in dealloyed nanoporous gold

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 84-92 | Received 11 Sep 2017, Published online: 03 Nov 2017

References

  • Zielasek V, Jürgens B, Schulz C, et al. Gold catalysts: nanoporous gold foams. Angew Chem Int Ed. 2006;45(48):8241–8244. doi: 10.1002/anie.200602484
  • Zhang J, Liu P, Ma H, et al. Nanostructured porous gold for methanol electro-oxidation. J Phys Chem C. 2007;111(28):10382–10388. doi: 10.1021/jp072333p
  • Xu C, Su J, Xu X, et al. Low Temperature CO Oxidation Over Unsupported Nanoporous Gold. J Amer Chem Soc. 2007;129(1):42–43. doi: 10.1021/ja0675503
  • Yin H, Zhou C, Xu C, et al. Aerobic oxidation of d-glucose on support-free nanoporous gold. J Phys Chem C. 2008;112(26):9673–9678. doi: 10.1021/jp8019864
  • Ding Y, Chen M. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009;34(08):569–576. doi: 10.1557/mrs2009.156
  • Wittstock A, Zielasek V, Biener J, et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science. 2010;327(5963):319–322. doi: 10.1126/science.1183591
  • Wittstock A, Biener J, Bäumer M. Nanoporous gold: A new material for catalytic and sensor applications. Phys Chem Chem Phys. 2010;12:12919–12930. doi: 10.1039/c0cp00757a
  • Volkert CA, Lilleodden ET, Kramer D, et al. Approaching the theoretical strength in nanoporous Au. Appl Phys Lett. 2006;89(6):061920. doi: 10.1063/1.2240109
  • Hodge AM, Biener J, Hayes JR, et al. Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 2007;55(4):1343–1349. doi: 10.1016/j.actamat.2006.09.038
  • Weissmüller J, Viswanath RN, Kramer D, et al. Charge-induced reversible strain in a metal. Science. 2003 Apr;300(5617):312–315. doi: 10.1126/science.1081024
  • Kramer D, Viswanath RN, Weissmüller J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett.. 2004;4(5):793–796. doi: 10.1021/nl049927d
  • Jin H-J, Parida S, Kramer D, et al. Sign-inverted surface stress-charge response in nanoporous gold. Surf Sci. 2008;602(23):3588–3594. doi: 10.1016/j.susc.2008.09.038
  • Jin HJ, Weissmüller J. Bulk nanoporous metal for actuation. Adv Eng Mater. 2010;12(8):714–723. doi: 10.1002/adem.200900329
  • Stenner C, Shao LH, Mameka N, et al. Piezoelectric gold: Strong charge-load response in a metal-based hybrid nanomaterial. Adv Funct Mater. 2016;26(28):5174–5181. doi: 10.1002/adfm.201600938
  • Lavrik NV, Tipple CA, Sepaniak MJ, et al. Enhanced chemi-mechanical transduction at nanostructured interfaces. Chem Phys Lett. 2001;336(5):371–376. doi: 10.1016/S0009-2614(01)00155-5
  • Biener J, Wittstock A, Zepeda-Ruiz LA, et al. Surface-chemistry-driven actuation in nanoporous gold. Nat Mater. 2009;8(1):47–51. doi: 10.1038/nmat2335
  • Seker E, Berdichevsky Y, Begley MR, et al. The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Nanotechnology. 2010;21(12):125504. doi: 10.1088/0957-4484/21/12/125504
  • Detsi E, Chen ZG, Vellinga WP, et al. Reversible strain by physisorption in nanoporous gold. Appl Phys Lett. 2011;99(8):083104. doi: 10.1063/1.3625926
  • Detsi E, Punzhin S, Rao J, et al. Enhanced strain in functional nanoporous gold with a dual microscopic length scale structure. ACS Nano. 2012;6(5):3734–3744. doi: 10.1021/nn300179n
  • Detsi E, Chen ZG, Vellinga WP, et al. Actuating and sensing properties of nanoporous gold. J Nanosci Nanotechnol. 2012;12(6):4951–4955. doi: 10.1166/jnn.2012.4882
  • Daggumati P, Matharu Z, Seker E. Effect of Nanoporous Gold Thin Film Morphology on Electrochemical DNA Sensing. Anal Chem. 2015;87(16):8149–8156. PMID: 25892217. doi: 10.1021/acs.analchem.5b00846
  • Zeis R, Lei T, Sieradzki K, et al. Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J Catal. 2008;253(1):132–138. doi: 10.1016/j.jcat.2007.10.017
  • Pickering HW, Swann PR. Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking. Corrosion. 1963;19(11):373t–389t. doi: 10.5006/0010-9312-19.11.373
  • Forty AJ. Corrosion micromorphology of noble metal alloys and depletion gilding. Nature. 1979;282(5739):597–598. doi: 10.1038/282597a0
  • Erlebacher J. An atomistic description of dealloying porosity evolution, the critical potential and rate-limiting behavior. J Electrochem Soc. 2004;151(10):C614–C626. doi: 10.1149/1.1784820
  • Cattarin S, Kramer D, Lui A, et al. Preparation and characterization of gold nanostructures of controlled dimension by electrochemical techniques. J Phys Chem C. 2007;111(34):12643–12649. doi: 10.1021/jp072405c
  • Rouya E, Cattarin S, Reed ML, et al. Electrochemical characterization of the surface area of nanoporous gold films. J Electrochem Soc. 2012;159(4):K97–K102. doi: 10.1149/2.097204jes
  • Weissmüller J, Duan HL, Farkas D. Deformation of solids with nanoscale pores by the action of capillary forces. Acta Mater. 2010;58(1):1–13. doi: 10.1016/j.actamat.2009.08.008
  • Mavrikakis M, Stoltze P, Nørskov J. Making gold less noble. Catal Lett. 2000;64(2):101–106. doi: 10.1023/A:1019028229377
  • Weissmüller J, Viswanath RN, Kibler LA, et al. Impact of surface mechanics on the reactivity of electrodes. Phys Chem Chem Phys. 2011;13:2114–2117. doi: 10.1039/C0CP01742F
  • Deng Q, Smetanin M, Weissmüller J. Mechanical modulation of reaction rates in electrocatalysis. J Catal. 2014;309:351–361. doi: 10.1016/j.jcat.2013.10.008
  • Schofield EJ, Ingham B, Turnbull A, et al. Strain development in nanoporous metallic foils formed by dealloying. Appl Phys Lett. 2008;92(4):043118. doi: 10.1063/1.2838351
  • Dotzler CJ, Ingham B, Illy BN, et al. In situ observation of strain development and porosity evolution in nanoporous gold foils. Adv Funct Mater. 2011;21(20):3938–3946. doi: 10.1002/adfm.201100735
  • Graf M, Ngô BND, Weissmüller J, et al. X-ray studies of nanoporous gold: powder diffraction by large crystals with small holes. Available from: http://arxivorg/abs/170807789 [cond-matmtrl-sci]; 2017.
  • Chen-Wiegart YCK, Harder R, Dunand DC, et al. Evolution of dealloying induced strain in nanoporous gold crystals. Nanoscale. 2017;9:5686–5693. doi: 10.1039/C6NR09635B
  • Fujita T, Guan P, McKenna K, et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater. 2012;11(9):775–780. doi: 10.1038/nmat3391
  • Guan L, Li X, Li Q, et al. Relaxation and electronic states of Au(100), (110) and (111) surfaces. Solid State Commun. 2009;149(37-38):1561–1564. doi: 10.1016/j.ssc.2009.05.046
  • Yankovich AB, Berkels B, Dahmen W, et al. High-precision scanning transmission electron microscopy at coarse pixel sampling for reduced electron dose. Adv Struct Chem Imag. 2015;1(1):1–5. doi: 10.1186/s40679-015-0003-9
  • Goris B, De Beenhouwer J, De Backer A, et al. Measuring lattice strain in three dimensions through electron microscopy. Nano Lett. 2015;15(10):6996–7001. doi: 10.1021/acs.nanolett.5b03008
  • Graf M, Roschning B, Weissmüller J. Nanoporous gold by alloy corrosion: Method-structure-property relationships. J Electrochem Soc. 2017;164(4):C194–C200. doi: 10.1149/2.1681704jes
  • Parida S, Kramer D, Volkert CA, et al. Volume change during the formation of nanoporous gold by dealloying. Phys Rev Lett. 2006;97(3):4–7. doi: 10.1103/PhysRevLett.97.035504
  • Giannuzzi LA, Stevie FA. A review of focused ion beam milling techniques for TEM specimen preparation. Micron. 1999;30(3):197–204. doi: 10.1016/S0968-4328(99)00005-0
  • Müller-Caspary K, Oelsner A, Potapov P. Two-dimensio nal strain mapping in semiconductors by nano-beam electron diffraction employing a delay-line detector. Appl Phys Lett. 2015;107(7):072110. doi: 10.1063/1.4927837
  • Ryll H, Simson M, Hartmann R, et al. A pnCCD-based, fast direct single electron imaging camera for TEM and STEM. J Instrum. 2016;11(04):P04006. doi: 10.1088/1748-0221/11/04/P04006
  • Özdöl V, Gammer C, Sarahan M, et al. Nano-scale Strain Mapping Using Advanced STEM with a Direct Electron Detector. Microsc Microanal. 2014;S20(3):1046–1047. doi: 10.1017/S1431927614006953
  • Uesugi F, Hokazono A, Takeno S. Evaluation of two-dimensional strain distribution by STEM/NBD. Ultramicroscopy. 2011;111(8):995–998. doi: 10.1016/j.ultramic.2011.01.035
  • Müller K, Rosenauer A, Schowalter M, et al. Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy. Microsc Microanal. 2012;18:995–1009. doi: 10.1017/S1431927612001274
  • Mahr C, Müller-Caspary K, Grieb T, et al. Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction. Ultramicroscopy. 2015;158:38–48. doi: 10.1016/j.ultramic.2015.06.011
  • Grieb T, Krause FF, Mahr C, et al. Optimization of NBED simulations for disc-detection measurements. Ultramicroscopy. 2017;181:50–60. doi: 10.1016/j.ultramic.2017.04.015
  • Bragg WH, Bragg WL. The reflection of X-rays by crystals. Proc R Soc Lond Ser A. 1913;88(605):428–438. doi: 10.1098/rspa.1913.0040
  • Rouvière J, Sarigiannidou E. Theoretical discussions on the geometrical phase analysis. Ultramicroscopy. 2005;106(1):1–17. doi: 10.1016/j.ultramic.2005.06.001
  • Béché A, Rouvière JL, Clément L, et al. Improved precision in strain measurement using nanobeam electron diffraction. Appl Phys Lett. 2009;95(12):123114–0. doi: 10.1063/1.3224886
  • Bierwolf R, Hohenstein M, Phillipp F, et al. Direct measurement of local lattice distortions in strained layer structures by HREM. Ultramicroscopy. 1993;49:273–285. doi: 10.1016/0304-3991(93)90234-O
  • Müller-Caspary K, Mehrtens T, Schowalter M, et al. ImageEval. A software for the processing, evaluation and acquisition of (S)TEM images. The 16th European Microscopy Congress, Lyon, France; 2016.
  • Capitani GC, Oleynikov P, Hovmöller S, et al. A practical method to detect and correct for lens distortion in the TEM. Ultramicroscopy. 2006;106(2):66–74. doi: 10.1016/j.ultramic.2005.06.003
  • Hren J. Specimen contamination in analytical electron microscopy: sources and solutions. Ultramicroscopy. 1978;3(Suppl C):375–380. doi: 10.1016/S0304-3991(78)80057-6
  • Isaacson M, Kopf D, Ohtsuki M, et al. Contamination as a psychological problem. Ultramicroscopy. 1979;4(1):97–99. doi: 10.1016/0304-3991(79)90012-3
  • Zugic B, Wang L, Heine C, et al. Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nat Mater. 2017;16(5):558–564. doi: 10.1038/nmat4824